Solvent control of crack dynamics in a reversible hydrogel.

Nat Mater

INSP, Université Pierre et Marie Curie-Paris 6, Université Denis Diderot-Paris 7, CNRS, UMR 7588 Campus Boucicaut, Paris, France.

Published: July 2006

The resistance to fracture of reversible biopolymer hydrogels is an important control factor of the textural characteristics of food gels (such as gummy candies and aspic preparations). It is also critical for their use in tissue engineering, for which mechanical protection of encapsulated components is needed. Its dependence on loading rate and, recently, on the density and strength of crosslinks has been investigated. But, so far, no attention has been paid to solvent or to environment effects. Here we report a systematic study of crack dynamics in gels of gelatin in water/glycerol mixtures. We show in this model system that increasing solvent viscosity slows down cracks; moreover soaking with solvent markedly increases gel fragility; finally tuning the viscosity by adding a miscible liquid affects crack propagation through diffusive invasion of the crack tip vicinity. The results highlight the fact that fracture occurs by viscoplastic chain pull-out. This mechanism, as well as the related phenomenology, should be common to all reversibly crosslinked (physical) gels.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nmat1666DOI Listing

Publication Analysis

Top Keywords

crack dynamics
8
solvent
4
solvent control
4
crack
4
control crack
4
dynamics reversible
4
reversible hydrogel
4
hydrogel resistance
4
resistance fracture
4
fracture reversible
4

Similar Publications

Highly printable, strong, and ductile ordered intermetallic alloy.

Nat Commun

January 2025

Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China.

Ordered intermetallic alloys are renowned for their impressive mechanical, chemical, and physical properties, making them appealing for various fields. However, practical applications of them have long been severely hindered due to their severe brittleness and poor fabricability. It is difficult to fabricate such materials into components with complex geometries through traditional subtractive manufacturing methods.

View Article and Find Full Text PDF

Effects of Pre-Deformation in Corrosion Fatigue Crack Growth of Al-Mg-Zn Alloy.

Materials (Basel)

January 2025

State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China.

This study investigated the effect of pre-deformation on the corrosion fatigue crack propagation (CFCG) of Al-Mg-Zn alloy in a corrosive environment. Tensile tests at different pre-deformation levels and molecular dynamics simulations analyzed changes in dislocation density. Corrosion fatigue experiments were conducted in a 3.

View Article and Find Full Text PDF

Methodology for Hydrogen-Assisted Fatigue Testing Using In Situ Cathodic Charging.

Materials (Basel)

January 2025

Chair of Materials Test Engineering (WPT), TU Dortmund University, Baroper Str. 303, D-44227 Dortmund, Germany.

With hydrogen being a promising candidate for many future and current energy applications, there is a need for material-testing solutions, which can represent hydrogen charging under superimposed mechanical loading. Usage of high purity gaseous hydrogen under high pressure in commercial solutions entails huge costs and also potential safety concerns. Therefore, a setup was developed utilizing a customized electrochemical charging cell built into a dynamic testing system.

View Article and Find Full Text PDF

A tough soft-hard interface in the human knee joint driven by multiscale toughening mechanisms.

Proc Natl Acad Sci U S A

January 2025

Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311113, China.

Joining heterogeneous materials in engineered structures remains a significant challenge due to stress concentration at interfaces, which often leads to unexpected failures. Investigating the complex, multiscale-graded structures found in animal tissue provides valuable insights that can help address this challenge. The human meniscus root-bone interface is an exemplary model, renowned for its exceptional fatigue resistance, toughness, and interfacial adhesion properties throughout its lifespan.

View Article and Find Full Text PDF

Study on Crack Resistance Mechanism of Helical Carbon Nanotubes in Nanocomposites.

Nanomaterials (Basel)

January 2025

Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong.

Helical carbon nanotubes (HCNTs) with different geometrical properties were constructed and incorporated into nanocomposites for the investigation of the anti-crack mechanism. The interfacial mechanical properties of the nanocomposites reinforced with straight carbon nanotubes and various types of HCNTs were investigated through the pullout of HCNTs in the crack propagation using molecular dynamics (MD). The results show that the pullout force of HCNTs is much higher than that of CNTs because the physical interlock between HCNTs and matrices is much stronger than the van der Waals (vdW) interactions between CNTs and matrices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!