Amyloid formation is a nucleation-dependent process that is accelerated dramatically in vivo and in vitro upon addition of appropriate fibril seeds. A potent species barrier can be effective in this reaction if donor and recipient come from different biological species. This species barrier is thought to reflect differences in the amino acid sequence between seed and target polypeptide. Here we present an in vitro mutagenic cross-seeding analysis of Alzheimer's Abeta(1-40) peptide in which we mapped out the effect of systematically varied amino acid replacements on the propensity of seed-dependent amyloid fibril formation. We find that the susceptibility of different peptides toward cross-seeding relates to the intrinsic aggregation propensity of the respective polypeptide chain and, therefore, to properties such as beta-sheet propensity and hydrophobicity. These data imply that the seed-dependent formation of amyloid-like fibrils is affected by the intrinsic properties of the polypeptide chain in a manner that is similar to what has been described previously for aggregation reactions in general. Hence, the nucleus acts in this case as a catalyst that promotes the fibrillation of different polypeptide chains according to their intrinsic structural predilection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2242566PMC
http://dx.doi.org/10.1110/ps.062116206DOI Listing

Publication Analysis

Top Keywords

species barrier
8
amino acid
8
polypeptide chain
8
mutagenic exploration
4
exploration cross-seeding
4
cross-seeding fibrillation
4
propensity
4
fibrillation propensity
4
propensity alzheimer's
4
alzheimer's beta-amyloid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!