AI Article Synopsis

  • ICOS is a protein that influences T cell activation and affects the severity of graft-vs-host disease (GVHD) in bone marrow transplants.
  • ICOS-deficient CD4(+) T cells showed reduced GVHD symptoms and lower production of harmful cytokines but maintained normal cell growth.
  • In contrast, ICOS-deficient CD8(+) T cells resulted in worse GVHD outcomes due to their increased survival and enhanced ability to proliferate, highlighting ICOS's complex role in T cell regulation during GVHD.

Article Abstract

ICOS, a CD28 family member expressed on activated CD4(+) and CD8(+) T cells, plays important roles in T cell activation and effector function. Here we studied the role of ICOS in graft-vs-host disease (GVHD) mediated by CD4(+) or CD8(+) T cells in allogeneic bone marrow transplantation. In comparison of wild-type and ICOS-deficient T cells, we found that recipients of ICOS(-/-) CD4(+) T cells exhibited significantly less GVHD morbidity and delayed mortality. ICOS(-/-) CD4(+) T cells had no defect in expansion, but expressed significantly less Fas ligand and produced significantly lower levels of IFN-gamma and TNF-alpha. Thus, ICOS(-/-) CD4(+) T cells were impaired in effector functions that lead to GVHD. In contrast, recipients of ICOS(-/-) CD8(+) T cells exhibited significantly enhanced GVHD morbidity and accelerated mortality. In the absence of ICOS signaling, either using ICOS-deficient donors or ICOS ligand-deficient recipients, the levels of expansion and Tc1 cytokine production of CD8(+) T cells were significantly increased. The level of expansion was inversely correlated with the level of apoptosis, suggesting that increased ability of ICOS(-/-) CD8(+) T cells to induce GVHD resulted from the enhanced survival and expansion of those cells. Our findings indicate that ICOS has paradoxical effects on the regulation of alloreactive CD4(+) and CD8(+) T cells in GVHD.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.176.12.7394DOI Listing

Publication Analysis

Top Keywords

cd8+ cells
24
cells
12
cd4+ cd8+
12
icos-/- cd4+
12
cd4+ cells
12
recipients icos-/-
8
cells exhibited
8
gvhd morbidity
8
icos-/- cd8+
8
icos
6

Similar Publications

Short-term starvation boosts anti-PD-L1 therapy by reshaping tumor-associated macrophages in hepatocellular carcinoma.

Hepatology

January 2025

Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China.

Background And Aims: Immune checkpoint inhibitors (ICIs) have revolutionized systemic hepatocellular carcinoma (HCC) treatment. Nevertheless, numerous patients are refractory to ICIs therapy. It is currently unknown whether diet therapies such as short-term starvation (STS) combined with ICIs can be used to treat HCC.

View Article and Find Full Text PDF

Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) driven by the mutation presents a formidable health challenge because of limited treatment options. MRTX1133 is a highly selective and first-in-class KRAS-G12D inhibitor under clinical development. Here, we report that the advanced glycosylation end product-specific receptor (AGER) plays a key role in mediating MRTX1133 resistance in PDAC cells.

View Article and Find Full Text PDF

Cancer immunotherapies rely on CD8 cytolytic T lymphocytes (CTLs) in recognition and eradication of tumor cells via antigens presented on major histocompatibility complex class I (MHC-I) molecules. However, we observe MHC-I deficiency in human and murine urologic tumors, posing daunting challenges for successful immunotherapy. We herein report an unprecedented nanosonosensitizer of one-dimensional bamboo-like multisegmented manganese dioxide@manganese-bismuth vanadate (BMMBV) to boost multiple branches of immune responses targeting MHC-I-deficient tumors.

View Article and Find Full Text PDF

PD-L1/PD-1 checkpoint inhibitors (CPIs) are mainstream agents for cancer immunotherapy, but the prognosis is unsatisfactory in solid tumor patients lacking preexisting T-cell reactivity. Adjunct therapy strategies including the intratumoral administration of immunostimulants aim to address this limitation. CpG oligodeoxynucleotides (ODNs), TLR9 agonists that can potentiate adaptive immunity, have been widely investigated to tackle PD-L1/PD-1 resistance, but clinical success has been hindered by inconsistent efficacy and immune-related toxicities caused by systemic exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!