Nuclear PI(4,5)P(2): a new place for an old signal.

Biochim Biophys Acta

Department of Pharmacology, University of Wisconsin Medical School, 1300 University Ave., Madison, WI 53706, USA.

Published: August 2006

Over the last decades, evidence has accumulated suggesting that there is a distinct nuclear phosphatidylinositol pathway. One of the best examined nuclear lipid pathways is the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PI4,5P(2)) by PLC resulting in activation of nuclear PKC and production of inositol polyphosphates. However, there is a growing number of data that phosphoinositides are not only precursor for soluble inositol phosphates and diacylglycerol, instead they can act as second messengers themselves. They have been implicated to play a role in different important nuclear signaling events such as cell cycle progression, apoptosis, chromatin remodeling, transcriptional regulation and mRNA processing. This review focuses on the role of specifically PI4,5P(2) in the nucleus as a second messenger as well as a precursor for PI3,4,5P3, inositol polyphosphates and diacylglycerol.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2006.03.002DOI Listing

Publication Analysis

Top Keywords

inositol polyphosphates
8
nuclear
5
nuclear pi45p2
4
pi45p2 place
4
place signal
4
signal decades
4
decades evidence
4
evidence accumulated
4
accumulated suggesting
4
suggesting distinct
4

Similar Publications

Regulation of INPP5E in Ciliogenesis, Development, and Disease.

Int J Biol Sci

January 2025

Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, USA.

Inositol polyphosphate-5-phosphatase E (INPP5E) is a 5-phosphatase critically involved in diverse physiological processes, including embryonic development, neurological function, immune regulation, hemopoietic cell dynamics, and macrophage proliferation, differentiation, and phagocytosis. Mutations in cause Joubert and Meckel-Gruber syndromes in humans; these are characterized by brain malformations, microphthalmia, situs inversus, skeletal abnormalities, and polydactyly. Recent studies have demonstrated the key role of INPP5E in governing intracellular processes like endocytosis, exocytosis, vesicular trafficking, and membrane dynamics.

View Article and Find Full Text PDF

Serum response factor (SRF) is a master transcription factor that regulates immediate early genes and cytoskeletal remodeling genes. Despite its importance, the mechanisms through which SRF stably associates with its cognate promoter remain unknown. Our biochemical and protein-induced fluorescence enhancement analyses showed that the binding of SRF to serum response element was significantly increased by inositol polyphosphate multikinase (IPMK), an SRF cofactor.

View Article and Find Full Text PDF

Insights into the Activation and Self-Association of Arrestin-1.

Biochemistry

December 2024

Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, California 92697, United States.

Arrestins halt signal transduction by binding to the phosphorylated C-termini of activated G protein-coupled receptors. Arrestin-1, the first subtype discovered, binds to rhodopsin in rod cells. Mutations in , the gene encoding Arrestin-1, are linked to Oguchi disease, characterized by delayed dark adaptation.

View Article and Find Full Text PDF
Article Synopsis
  • Inositol hexakisphosphate (InsP) is a strong binder of bivalent cations, particularly magnesium inside cells and calcium outside.
  • To prevent harmful calcium-InsP complexes from forming in the bloodstream, mammals need an effective InsP phosphatase.
  • The study identifies Multiple Inositol Polyphosphate Phosphatase 1 (MINPP1) as the main InsP phosphatase found in human plasma.
View Article and Find Full Text PDF

The putative polyamine transporter Shp2 facilitates phosphate export in an Xpr1-independent manner and contributes to high phosphate tolerance.

J Biol Chem

December 2024

Faculty of Science and Engineering, Department of Biology, Konan University, Kobe, Japan; Institute of Integrative Neurobiology, Konan University, Kobe, Japan. Electronic address:

Phosphate (Pi) homeostasis at the cellular level is crucial, requiring coordinated Pi uptake, storage, and export. However, the regulatory mechanisms, particularly those governing Pi export, remain elusive, despite their relevance to human diseases like primary familial brain calcification. While Xpr1, conserved across eukaryotes, is the only known Pi exporter, the existence of additional Pi exporting factors is evident; however, these factors have been poorly characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!