Previous research suggested that alpha2A and alpha2C adrenergic receptor (AR) subtypes have overlapping but unique physiological roles in neuronal signaling; however, the basis for these dissimilarities is not completely known. To better understand the observed functional differences between these autoreceptors, we investigated targeting and signaling of endogenously expressed alpha2A and alpha2CARs in cultured sympathetic ganglion neurons (SGN). At Days 1 and 4, alpha2A and alpha2CARs could be readily detected in SGN from wild-type mice. By Day 8, alpha2A ARs were targeted to cell body, as well as axonal and dendritic sites, whereas alpha2C ARs were primarily localized to an intracellular vesicular pool within the cell body and proximal dendritic projections. Expression of synaptic vesicle marker protein SV2 did not differ at Day 8 nor co-localize with either subtype. By Day 16, however, alpha2C ARs had relocated to somatodendritic and axonal sites and, unlike alpha2A ARs, co-localized with SV2 at synaptic contact sites. Consistent with a functional role for alpha2 ARs, we also observed that dexmedetomidine stimulation of cultured SGN more efficiently inhibited depolarization-induced calcium entry into older, compared to younger, cultures. These results provide direct evidence of distinct developmental patterns of endogenous alpha2A and alpha2C AR targeting and function in a native cell system and that maturation of SGN in culture leads to alterations in neuronal properties required for proper targeting. More importantly, the co-localization at Day 16 of alpha2C ARs at sites of synaptic contact may partially explain the differential modulation of neurotransmitter release and responsiveness to action potential frequency observed between alpha2A and alpha2C ARs in SGN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4010102PMC
http://dx.doi.org/10.1016/j.neuropharm.2006.03.032DOI Listing

Publication Analysis

Top Keywords

alpha2a alpha2c
16
alpha2c ars
16
targeting function
8
alpha2a
8
alpha2c adrenergic
8
adrenergic receptor
8
receptor subtypes
8
cultured sympathetic
8
alpha2a alpha2cars
8
alpha2a ars
8

Similar Publications

Catecholamines binding to α- and β-adrenergic receptors on immune cells have recently been shown to play an important role in regulating immune responses. Although α2-adrenergic receptors are known to modulate the immune response in different ways, the therapeutic exploration of their utility has been limited by the lack of agonists selective for the three α2-adrenergic subtypes. We report in this study the identification of the agonist AGN-762, which activates α2B- and α2C-adrenergic subtypes, but not the α2A subtype.

View Article and Find Full Text PDF

Endometritis is a common disease in animals, leading to disruption of reproductive processes and economic losses. Noradrenergic control of prostaglandin (PG)I2 formation by inflamed endometrium is unknown. We determined the involvement of α1-, α2- and β-adrenoreceptors (ARs) in noradrenaline-influenced PGI synthase (PGIS) protein abundance and PGI2 release from porcine (1) endometrial explants with ()-induced inflammation in vivo, and (2) lipopolysaccharide (LPS)-treated endometrial epithelial cells.

View Article and Find Full Text PDF

Adrenergic receptor system as a pharmacological target in the treatment of epilepsy (Review).

Med Int (Lond)

February 2024

Department of Physiology, Faculty of Medicine, Sivas Cumhuriyet University, 58140 Sivas, Turkey.

Epilepsy is a complex and common neurological disorder characterized by spontaneous and recurrent seizures, affecting ~75 million individuals worldwide. Numerous studies have been conducted to develop new pharmacological drugs for the effective treatment of epilepsy. In recent years, numerous experimental and clinical studies have focused on the role of the adrenergic receptor (AR) system in the regulation of epileptogenesis, seizure susceptibility and convulsions.

View Article and Find Full Text PDF

The mechanism by which α2-adrenergic receptors (ARs) modulate the cerebellar parallel fiber-Purkinje cell (PF-PC) synaptic transmission is unclear. We investigated this issue using electrophysiological and neuropharmacological methods. Six- to eight-week-old ICR mice were used in the study.

View Article and Find Full Text PDF

Structures of Adrenoceptors.

Handb Exp Pharmacol

September 2024

MRC Laboratory of Molecular Biology, Cambridge, UK.

The first structure of an adrenoceptor (AR), the human β-adrenoceptor (hβAR) was published in 2007 and since then a total of 78 structures (up to June 2022) have been determined by X-ray crystallography and electron cryo-microscopy (cryo-EM) of all three βARs (β, β and β) and four out of six αARs (α, α, α, α). The structures are in a number of different conformational states, including the inactive state bound to an antagonist, an intermediate state bound to agonist and active states bound to agonist and an intracellular transducer (G protein or arrestin) or transducer mimetic (nanobody). The structures identify molecular details of how ligands bind in the orthosteric binding pocket (OBP; 19 antagonists, 18 agonists) and also how three different small molecule allosteric modulators bind.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!