A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functional characterization of sodium-dependent multivitamin transporter in MDCK-MDR1 cells and its utilization as a target for drug delivery. | LitMetric

The objective of this research is to characterize a sodium-dependent multivitamin transporter (SMVT) in MDCK-MDR1 cells (Madin-Darby canine kidney cells transfected with the human MDR1 gene) and to investigate the feasibility of utilizing the MDCK-MDR1 cell line as an in vitro model to study the permeability of biotin-conjugated prodrugs of anti-HIV protease inhibitors. Mechanism of [3H]biotin uptake and transport was delineated. Transepithelial permeability of the biotin-conjugated prodrug, i.e., biotin-saquinavir, was also studied. Reverse transcription polymerase chain reaction (RT-PCR) was carried out to confirm the existence of SMVT in MDCK-MDR1 cells. Biotin uptake was Na+, pH, and temperature dependent, but energy independent. Uptake of biotin was found to be saturable with a Km of 13.0 microM, Vmax 21.5 of pmol min-1 (mg of protein)-1, and Kd of 0.12 microL min-1 (mg of protein)-1. Both apical and basal uptake and transepithelial transport of [3H]biotin showed that SMVT localized predominantly on the apical membrane of MDCK-MDR1 cells. [3H]Biotin uptake was inhibited by excess unlabeled biotin and its structural analogues, i.e., desthiolbiotin and valeric acid, and other vitamins such as lipoic acid and pantothenic acid, but not by acetic acid, benzoic acid, biotin methyl ester, and biocytin. Biotin-saquinavir caused lowering of [3H]biotin uptake, which indicates that it is recognized by SMVT. Apical to basal transport of [3H]biotin was also significantly inhibited in the presence of excess biotin or biotin-saquinavir. Transepithelial transport studies of biotin-saquinavir in MDCK-MDR1, wild type MDCK, and Caco-2 cells revealed that permeability of biotin-saquinavir was similar in all three cell lines. A band of SMVT mRNA at 862 bp was identified by RT-PCR. A sodium-dependent multivitamin transporter, SMVT, responsible for biotin uptake and transport, was identified and functionally characterized in MDCK-MDR1 cells. Therefore, the MDCK-MDR1 cell line may be utilized as an in vitro model to study the permeability of biotin-conjugated prodrugs such as HIV protease inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2553563PMC
http://dx.doi.org/10.1021/mp0500768DOI Listing

Publication Analysis

Top Keywords

mdck-mdr1 cells
20
sodium-dependent multivitamin
12
multivitamin transporter
12
permeability biotin-conjugated
12
[3h]biotin uptake
12
mdck-mdr1
8
transporter smvt
8
smvt mdck-mdr1
8
mdck-mdr1 cell
8
vitro model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!