Polysaccharides synthesised by micro-organisms: The molecular structure of galactocarolose produced from glucose by Penicillium Charlesii G. Smith.

Biochem J

The Chemical Laboratories, University of Birmingham, and the Division of Biochemistry, London School of Hygiene and Tropical Medicine, University of London.

Published: April 1937

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1266983PMC
http://dx.doi.org/10.1042/bj0310640DOI Listing

Publication Analysis

Top Keywords

polysaccharides synthesised
4
synthesised micro-organisms
4
micro-organisms molecular
4
molecular structure
4
structure galactocarolose
4
galactocarolose produced
4
produced glucose
4
glucose penicillium
4
penicillium charlesii
4
charlesii smith
4

Similar Publications

Breast cancer ranks as the second leading reason of cancer mortality among females globally, emphasizing the critical need for novel anticancer treatments. In current work, berberine-zinc oxide conjugated chitosan nanoparticles were synthesized and characterized using various characterization techniques. The cytotoxic effects of CS-ZnO-Ber NPs on MCF-7 cells were assessed using the MTT assay.

View Article and Find Full Text PDF

For the effective removal of phenol from the environment, photocatalytic synergistic adsorption is currently one of the key methods. By leveraging the polysaccharide backbone structure of sodium alginate (SA),Zinc hydroxystannate (ZHS) was introduced into the gel structure using a co-precipitation technique. Additionally, gangue waste was repurposed through a polymerization reaction.

View Article and Find Full Text PDF

This study presents an efficient and environmentally sustainable synthesis of ZnO nanoparticles using a starch-mediated sol-gel approach. This method yields crystalline mesoporous ZnO NPs with a hexagonal wurtzite structure. The synthesized nanoparticles demonstrated remarkable multifunctionality across three critical applications.

View Article and Find Full Text PDF

Preparation of CHS-FeO@@ZIF-8 peroxidase-mimic with an ultra-thin hollow layer for ultrasensitive electrochemical detection of kanamycin.

Mikrochim Acta

January 2025

Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, P. R. China.

A highly sensitive and selective electrochemical biosensor was developed for the detection of kanamycin using a core-hollow-shell structured peroxidase-mimic nanozyme, CHS-Fe₃O₄@@ZIF-8. The synthesized CHS-FeO@@ZIF-8 was characterized with scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. It was found that the CHS-FeO@@ZIF-8 exhibits excellent peroxidase-like activity due to  its ultra-thin hollow layer.

View Article and Find Full Text PDF

Genomic analysis of Marinobacter sp. M5B reveals its role in alginate biosynthesis.

Mar Genomics

March 2025

School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China. Electronic address:

Alginate is a natural marine polysaccharide and an important marine organic carbon source, which is mainly produced by marine brown algae. Marinobacter sp. M5B, a Gram-negative and aerobic bacterium, was isolated from the surface seawater samples collected from the Mariana Trench.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!