Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1260676 | PMC |
http://dx.doi.org/10.1042/bj0250606 | DOI Listing |
Sci Rep
January 2025
Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
Glomerular endothelial cells (GECs) are pivotal in developing glomerular sclerosis disorders. The advancement of focal segmental glomerulosclerosis (FSGS) is intimately tied to disruptions in lipid metabolism. Sphingosine-1-phosphate (S1P), a molecule transported by high-density lipoproteins (HDL), exhibits protective effects on vascular endothelial cells by upregulating phosphorylated endothelial nitric oxide synthase (p-eNOS) and enhancing nitric oxide (NO) production.
View Article and Find Full Text PDFJ Endocrinol
January 2025
W L Miller, Department of Pediatrics, Center for Reproductive Sciences, and Institute for Human Genetics University of California, San Francisco, United Kingdom of Great Britain and Northern Ireland.
Current understanding of the biology, biochemistry and genetics of the steroidogenic acute regulatory protein (StAR) and its deficiency state (congenital lipoid adrenal hyperplasia, lipoid CAH) involves the complex interplay of four areas of study: the acute regulation of steroidogenesis, clinical phenomena in lipoid CAH, the enzymatic conversion of cholesterol to pregnenolone in steroidogenic mitochondria, and the cell biology of StAR. This review traces the origins of these areas of study, describes how they have been woven into an increasingly coherent fabric, and tries to explore some remaining loose ends in this ongoing field of endocrine research. Abundant research from multiple laboratories establishes that StAR is required for the rapid, abundant steroidal responses of the adrenals and gonads, but all steroidogenic cells, especially the placenta, have StAR-independent steroidogenesis, whose basis remains under investigation.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
Biofilm-associated surgical site infection (BSSI) is a common and grievous postoperative complication lacking effective remedies, mainly due to the poor drug accumulation and penetration in the biofilms featured by dense extracellular polymeric substances (EPSs). Here, it is found that the vascular cell adhesion molecule-1 (VCAM1) is highly overexpressed in the vascular cells of BSSI. It is proposed that the combination of VCAM1-mediated transcytosis and ultrasonic cavitation can consecutively overcome the biological barriers of vascular endothelial cells and EPS for biofilm eradication.
View Article and Find Full Text PDFCureus
September 2024
Radiology, Lebanese American University School of Medicine, Beirut, LBN.
J Clin Med
July 2024
Department of Dermatology, University of Pisa, 56126 Pisa, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!