Brachial artery vasoactivity (BAVA) is a reliable, noninvasive method of assessing endothelium-dependent vasodilatation (EDV) in vivo. Acute hyperglycemia, impaired glucose tolerance (IGT), and diabetes mellitus impair EDV, a precursor to atherosclerosis. Thiamine is a coenzyme important in intracellular glucose metabolism. The purpose of this study was to evaluate the effect of thiamine on BAVA in the presence of hyperglycemia. Ten healthy subjects (group H, mean age 27 years), 10 patients with impaired glucose tolerance by World Health Organization criteria (group IGT, mean age 65 years), and 10 patients with non-insulin-dependent diabetes mellitus (group NIDDM, mean age 50 years) were studied. Duplex ultrasound was used to measure brachial artery flow changes in response to reactive hyperemia following brachial artery tourniquet occlusion for 5 min. This test was performed after a 10 hr fast and at 30, 60, and 120 min after a 75 g oral glucose challenge along with measurements of blood glucose level (BGL). A week later, BAVA evaluation was repeated after administration of 100 mg of intravenous thiamine. BAVA (% increased blood flow) at peak and trough BGL was compared with and without thiamine. BAVA at peak glucose improved from 69.0 +/- 6.4% to 152.8 +/- 22.9% in group H (p < 0.005), from 57.6 +/- 12.6% to 139.7 +/- 12.4% in group IGT (p < 0.005), and from 57.8 +/- 8.3% to 167.8 +/- 11.6% in group NIDDM (p < 0.005) following administration of thiamine. On the other hand, at trough glucose levels, BAVA remained essentially unchanged in group H (prethiamine 83.8 +/- 6.5% vs. post-thiamine 83.8 +/- 17.0%, p > 0.05) as well as group IGT (prethiamine 96.7 +/- 8.5% vs. post-thiamine 104.0 +/- 17.4%, p > 0.05). BAVA at trough glucose was not measured in group NIDDM secondary to trough BGL > 140 mg/dL. EDV was improved by thiamine in the presence of hyperglycemia in healthy subjects and in patients with IGT and NIDDM. The mechanism by which thiamine improves EDV is not due to a glucose-lowering effect as thiamine had no effect on EDV under normoglycemic conditions. Routine administration of thiamine might improve endothelial function and therefore slow the development and progression of atherosclerosis, especially in patients with IGT and NIDDM who are prone to develop accelerated atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10016-006-9055-6 | DOI Listing |
Int J Mol Sci
December 2024
Department III Functional Sciences-Pathophysiology, Faculty of Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timisoara, Romania.
Black chokeberry (
Cell Signal
January 2025
Department of Endocrinology, The Third Xiangya Hospital, Central South University, 410007 Changsha, Hunan, China. Electronic address:
Type 1 diabetes (T1D) is an autoimmune disease characterized by hyperglycemia caused by the destruction of insulin-producing β cells. Viral infection is an important environmental factor which is associated with the islet autoimmunity in genetically susceptible individuals. Loss of β-cells and triggering of insulitis following viral infection could result from several non-exclusive mechanisms.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China. Electronic address:
Theaflavins, oxidation product of tea polyphenols, have demonstrated significant inhibitory effects on α-glucosidase, which is beneficial in alleviating hyperglycemia. This study found that the inhibition of four monomers of theaflavins on α-glucosidase was related to the presence of the galloyl moiety (GM), with IC values ranging from TFDG (0.26 mg/mL) < TF3'G (0.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China.
Background: Tubular injury triggered by hyperglycemia is an important pathological characteristic in diabetic nephropathy (DN). Accumulated advanced glycation end products and their precursor methylglyoxal (MGO), contribute to the development of DN. Carnosine has been shown to prevent the development of DN but the underlying mechanism still needs to be studied in depth.
View Article and Find Full Text PDFDiabetol Metab Syndr
December 2024
Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
Background: Lately, numerous researches have portrayed stress hyperglycemia ratio (SHR) is predominantly connected with short-term adverse prognosis among individuals who have acute coronary syndrome. Nevertheless, the relation of SHR with prolonged effects and the value of SHR in predicting in coronary artery disease (CAD) patients with or lacking chronic kidney disease (CKD) remain unclear. The present study was designed to elucidate the relation of SHR with prolonged prognosis and the value of SHR in predicting the long-term all-cause and cardiovascular death of CAD patients with CKD or non-CKD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!