An understanding of posttranslational events in nuclear receptor signaling is crucial for drug design and clinical therapeutic strategies. Phosphorylation is a well-characterized posttranslational modification that regulates subcellular localization and function of nuclear receptors and coregulators. Although the role of single phosphorylation sites in nuclear receptor function has been described, the contribution of combinations of multiple phosphorylation sites to receptor function remains unclear. The development of phosphoantibodies to each phosphorylation site in a nuclear receptor is a powerful tool to address the role of phosphorylation in multiply phosphorylated receptors. However, phosphoantibodies must be rigorously validated prior to use. This review describes the general methodology for design, characterization and validation of phosphoantibodies using the example of eight phosphoantibodies raised against phosphorylation sites in estrogen receptor alpha (ERalpha).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1472668PMC
http://dx.doi.org/10.1621/nrs.04007DOI Listing

Publication Analysis

Top Keywords

nuclear receptor
16
phosphorylation sites
12
receptor signaling
8
estrogen receptor
8
receptor alpha
8
receptor function
8
receptor
7
phosphorylation
6
nuclear
5
phosphoantibodies
5

Similar Publications

Background: Post-menopausal women experience more severe muscular fatty infiltration, though the mechanisms remain unclear. The decline in estrogen levels is considered as a critical physiological alteration during post-menopause. Fibro/adipogenic progenitors (FAPs) are identified as major contributors to muscular fatty infiltration.

View Article and Find Full Text PDF

Liver x receptor alpha (LXRα) functions as an intracellular cholesterol sensor that regulates lipid metabolism at the transcriptional level in response to the direct binding of cholesterol derivatives. We have generated mice with a mutation in LXRα that reduces activity in response to endogenous cholesterol derived LXR ligands while still allowing transcriptional activation by synthetic agonists. The mutant LXRα functions as a dominant negative that shuts down cholesterol sensing.

View Article and Find Full Text PDF

Retrotransposon Gag-like (RTL) 8A, 8B and 8C are eutherian-specific genes derived from a certain retrovirus. They cluster as a triplet of genes on the X chromosome, but their function remains unknown. Here, we demonstrate that and play important roles in the brain: their double knockout (DKO) mice not only exhibit reduced social responses and increased apathy-like behaviour, but also become obese from young adulthood, similar to patients with late Prader-Willi syndrome (PWS), a neurodevelopmental genomic imprinting disorder.

View Article and Find Full Text PDF

Modulation of Protein-Protein Interactions with Molecular Glues in a Synthetic Condensate Platform.

J Am Chem Soc

January 2025

Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

Misregulation of protein-protein interactions (PPIs) underlies many diseases; hence, molecules that stabilize PPIs, known as molecular glues, are promising drug candidates. Identification of novel molecular glues is highly challenging among others because classical biochemical assays in dilute aqueous conditions have limitations for evaluating weak PPIs and their stabilization by molecular glues. This hampers the systematic discovery and evaluation of molecular glues.

View Article and Find Full Text PDF

New insights into the regulation of cyp3a65 expression in transgenic tg(cyp3a65:GFP) zebrafish embryos.

Aquat Toxicol

January 2025

Unité écotoxicologie des substances et des milieux, Institut National de l'Environnement Industriel et des Risques (INERIS), 60550 Verneuil-en-Halatte, France. Electronic address:

Facing the need for alternative models allowing assessment of metabolic-endocrine disrupting chemicals (MDCs), especially in poorly investigated tissues such as the intestine, we recently developed a transgenic zebrafish embryo in vivo model, tg(cyp3a65:GFP), expressing the Green Fluorescent Protein (GFP) under the control of the zebrafish cyp3a65 promoter, ortholog of human cyp3a4, a gene coding for a key enzyme of intestinal xenobiotic and endobiotic metabolism. In this study, we aimed to better understand the regulation of cyp3a65 expression by zfPXR, zfAhR2, and zfGR zebrafish orthologs of well-known human xenosensors PXR and AhR, and steroid nuclear receptor GR. For this purpose, we performed zebrafish embryo tg(cyp3a65:GFP) (co)exposures to a variety of agonists (clotrimazole, TCDD, fluticasone propionate) and antagonists (econazole nitrate, CH223181, RU486), which were characterized using in vitro zebrafish reporter gene assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!