The DNA Sequencing Research Group (DSRG) of the ABRF conducted a study to assess the ability of DNA sequencing core facilities to successfully sequence a set of well-defined templates containing difficult repeats. The aim of this study was to determine whether repetitive templates could be sequenced accurately by using equipment and chemistries currently utilized in participating sequencing laboratories. The effects of primer and template concentrations, sequencing chemistries, additives, and instrument formats on the ability to successfully sequence repeat elements were examined. The first part of this study was an analysis of the results of 361 chromatograms from participants representing 40 different laboratories who attempted to sequence a panel of difficult-to-sequence templates using their best in-house protocols. The second part of this study was a smaller multi-laboratory evaluation of a single robust protocol with the same panel of templates. This study provides a measure of the potential success of different approaches to sequencing across homopolymer tracts and repetitive elements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2291771PMC

Publication Analysis

Top Keywords

dna sequencing
8
templates
5
sequencing
5
study
5
evaluation methods
4
sequence
4
methods sequence
4
sequence analysis
4
analysis highly
4
highly repetitive
4

Similar Publications

A fifth world case of autosomal recessive Siddiqi syndrome (SIDDIS) related to ene is presented. In a consanguineous Lezgin (a Dagestan ethnicity) family, there were two affected brothers aged 28 yrs (proband, personally examined) and 32 yrs. Whole-exome sequencing followed by familial Sanger sequencing detected a novel missence variant c.

View Article and Find Full Text PDF

Mental disorders are complex illnesses with multifactorial etiologies involving genetic and environmental components. This review focuses on cellular models derived from the olfactory epithelium as a promising tool to study the molecular mechanisms of some neuropsychiatric diseases. The authors consider cell lines allowing the identification of potential biomarkers and pathogenetic mechanisms of schizophrenia, bipolar disorder, and Alzheimer's disease.

View Article and Find Full Text PDF

Background: The use of liquid biopsy of total cell-free DNA (cfDNA) to identify otherwise undetectable cancers has attracted interest; however, its efficacy remains unknown. We explored whether analysis using total cfDNA is efficacious for Japanese patients with oral squamous cell carcinoma (OSCC).

Methods: We collected total cfDNA from nine patients with OSCC preoperatively, 1 month postoperatively, and every 3 months thereafter to analyze this association.

View Article and Find Full Text PDF

Enhanced subtyping from stool samples using semi-nested barcode PCR: validation with an NGS-based approach.

Biotechniques

December 2024

Laboratorio de Parasitología Molecular, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia.

In 2006, a PCR method was introduced to subtype by Sanger sequencing of an ≈610 bp amplicon of the 18S rRNA gene. This method, known as barcoding-PCR, has become widespread, although the primer pair used can amplify non- sequences, which can result in false positives. Barcoding-PCR is most effective with DNA extracted from cultures, limiting its sensitivity when used directly with stool samples.

View Article and Find Full Text PDF

Background: Amplicon sequencing of kingdom-specific tags such as 16S rRNA gene for bacteria and internal transcribed spacer (ITS) region for fungi are widely used for investigating microbial communities. So far most human studies have focused on bacteria while studies on host-associated fungi in health and disease have only recently started to accumulate. To enable cost-effective parallel analysis of bacterial and fungal communities in human and environmental samples, we developed a method where 16S rRNA gene and ITS1 amplicons were pooled together for a single Illumina MiSeq or HiSeq run and analysed after primer-based segregation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!