We have adapted the techniques of DNA footprint analysis to an Applied Biosystems 3730 DNA Analyzer. The use of fluorescently labeled primers eliminates the need for radioactively labeled nucleotides, as well as slab gel electrophoresis, and takes advantage of commonly available automated fluorescent capillary electrophoresis instruments. With fluorescently labeled primers and dideoxynucleotide DNA sequencing, we have shown that the terminal base of each digested fragment may be accurately identified with a capillary-based instrument. Polymerase chain reaction (PCR) was performed with a 6FAM-labeled primer to amplify a typical target promoter region. This PCR product was then incubated with a transcriptional activator protein, or bovine serum albumin as a control, and then partially digested with DNase I. A clone of the promoter was sequenced with the Thermo Sequenase Dye Primer Manual Cycle Sequencing kit (USB) and the FAM-labeled primer. Through the use of Genemapper software, the Thermo sequenase and DNasei digestion products were accurately aligned, providing a ready means to assign correct nucleotides to each peak from the DNA footprint. This method was used to characterize the binding of two different transcriptional activator proteins to their respective promoter regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2291779PMC

Publication Analysis

Top Keywords

dye primer
8
dna footprint
8
fluorescently labeled
8
labeled primers
8
transcriptional activator
8
thermo sequenase
8
dna
5
identification dna
4
dna bases
4
bases dnase
4

Similar Publications

The close genetic resemblance between Listeria monocytogenes and Listeria innocua, combined with their presence in similar environments, poses challenges for species-specific detection in food products. Ensuring food safety through microbiological standards necessitates reliable detection of pathogens like L. monocytogenes and L.

View Article and Find Full Text PDF

Purpose: The aim of the present study was to establish a SYBR Green-based real-time PCR assay for detection of the Nc5 segment from the Neospora caninum genome.

Methods: The oligonucleotides sequences targeting the Nc5 gene previously reported and designed in-house were validated. Two Primer sets were evaluated and tested in four different combinations.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to enhance early diagnosis of candidemia in ICU patients by identifying risk factors and developing a new scoring system, known as the Cerrahpaşa score.
  • A retrospective analysis of 100 ICU patients revealed key risk factors such as sepsis and prolonged antibiotic use, while a prospective evaluation of 75 patients established a cutoff score of ≥4 points as indicative of increased candidemia risk.
  • The research concluded that the Cerrahpaşa score, combined with a real-time PCR assay, could improve the early detection and management of candidemia in critically ill patients.
View Article and Find Full Text PDF

Staphylococcus pseudintermedius (S. pseudintermedius) is a significant cause of pyoderma, soft tissue, urinary tract, and ear infections in cats and dogs. Bacterial culture and biochemical phenotypic assays are the gold standards for clinical diagnosis of bacteria but molecular methods have now been developed to identify and differentiate S.

View Article and Find Full Text PDF

Quantitative polymerase chain reaction (qPCR) and digital PCR (dPCR) are applied for quantifying molecular targets in disease diagnostics, pathogen detection, and ecological monitoring. Uptake of dPCR is increasing due to its higher quantification accuracy relative to qPCR, which stems from its independence from standard curves and its increased resistance to PCR inhibitors. Throughput can be increased through multiplexing, which allows simultaneous quantification of multiple targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!