A potential role for prolactin-releasing peptide (PrRP) in appetite regulation and hydromineral balance in goldfish was examined. PrRP was found to be expressed in discrete regions of the goldfish brain, in particular, the hypothalamus. Intraperitoneal (IP) or intracerebroventricular administration of PrRP had dose-dependent effects to suppress food intake in goldfish. Hypothalamic PrRP mRNA expression significantly increased after feeding, as well as after 7 days of food deprivation. Refeeding fish after 7 days food deprivation did not result in a postprandial increase in PrRP mRNA expression. These data suggest an anorexigenic role for PrRP in the short term around a scheduled meal time, but not over the longer term. IP injection of PrRP significantly increased pituitary prolactin (PRL) mRNA levels, suggesting involvement in the regulation of lactotroph activity. Acclimating goldfish to an ion-poor environment decreased serum osmolality and increased PrRP and PRL mRNA levels, providing evidence for PrRP involvement in hydromineral balance through its actions on lactotrophs. Acclimation to ion-poor water diminished the anorexigenic properties of PrRP in goldfish, indicating that a role for PrRP in goldfish satiation is counterbalanced by alternate systemic needs (i.e., osmoregulatory). This was further supported by an ability to reinstate the anorexigenic actions of PrRP in fish acclimated to ion-poor water by feeding a salt-rich diet. These studies provide evidence that PrRP is involved in regulating appetite and hydromineral balance in fish, and that the degree of involvement in either process varies according to overall systemic needs in response to environmental conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.00129.2006 | DOI Listing |
J Exp Biol
October 2024
Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
Insects such as the model organism Drosophila melanogaster must modulate their internal physiology to withstand changes in temperature and availability of water and food. Regulation of the excretory system by peptidergic hormones is one mechanism by which insects maintain their internal homeostasis. Tachykinins are a family of neuropeptides that have been shown to stimulate fluid secretion from the Malpighian 'renal' tubules (MTs) in some insect species, but it is unclear if that is the case in the fruit fly, D.
View Article and Find Full Text PDFPhysiol Behav
October 2024
Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, 32611, United States; Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, 32611, United States; Center for Smell and Taste, University of Florida, Gainesville, FL, 32611, United States; Neuroscience Institute, Georgia State University, Atlanta, GA, 30302, United States.
Angiotensin-II (Ang-II) production is driven by deviations in blood volume and osmolality, and serves the role of regulating blood pressure and fluid intake to maintain cardiovascular and hydromineral homeostasis. These actions are mediated by Ang-II acting on its type 1a receptor (AT1aR) within the central nervous system and periphery. Of relevance, AT1aR are expressed on sensory afferents responsible for conveying cardiovascular information to the nucleus of the solitary tract (NTS).
View Article and Find Full Text PDFMol Cell Endocrinol
October 2024
Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA; Molecular Medicine Graduate Program, University of Iowa, Iowa City, IA, USA. Electronic address:
Mineralocorticoids play a key role in hydromineral balance by regulating sodium retention and potassium wasting. Through favoring sodium, mineralocorticoids can cause hypertension from fluid overload under conditions of hyperaldosteronism, such as aldosterone-secreting tumors. An often-overlooked mechanism by which aldosterone functions to increase sodium is through stimulation of salt appetite.
View Article and Find Full Text PDFJ Comp Physiol B
October 2024
Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK, 74078, USA.
The endocrine system is an essential regulator of the osmoregulatory organs that enable euryhaline fishes to maintain hydromineral balance in a broad range of environmental salinities. Because branchial ionocytes are the primary site for the active exchange of Na, Cl, and Ca with the external environment, their functional regulation is inextricably linked with adaptive responses to changes in salinity. Here, we review the molecular-level processes that connect osmoregulatory hormones with branchial ion transport.
View Article and Find Full Text PDFPhysiol Rev
July 2024
Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada.
The Na-Cl cotransporter (NCC; SLC12A3) is a highly regulated integral membrane protein that is known to exist as three splice variants in primates. Its primary role in the kidney is to mediate the cosymport of Na and Cl across the apical membrane of the distal convoluted tubule. Through this role and the involvement of other ion transport systems, NCC allows the systemic circulation to reclaim a fraction of the ultrafiltered Na, K, Cl, and Mg loads in exchange for Ca and [Formula: see text].
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!