A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Endothelin-1 is required during epithelial to mesenchymal transition in ovarian cancer progression. | LitMetric

In a range of human cancers, tumorigenesis is promoted by activation of the endothelin A receptor (ET(A)R)/endothelin-1 (ET-1) axis. ET-1 and ET(A)R are overexpressed in primary and metastatic ovarian carcinomas, and high levels of ET-1 are detectable in patient ascites, suggesting that ET-1 may promote tumor dissemination. Moreover, in these tumors, engagement of ET(A) receptor by ET-1 triggers tumor growth, survival, angiogenesis, and invasiveness. Thus, ET-1 enhances the secretion of matrix metalloproteinases, disrupts intercellular communications, and stimulates cell migration and invasion. Therefore, we investigated the role of the ET-1/ET(A)R autocrine axis in promoting epithelial to mesenchymal transition (EMT) in ovarian tumor cells, a key event in cancer metastasis, in which epithelial cells depolarize, disassemble cell-cell contacts, and adopt an invasive phenotype. Here, we examine the potential role of ET-1 in regulating cell morphology and behavior and epithelial and mesenchymal proteins employing an in vitro 3-D culture system. We found that in 3-D serum-free collagen I gel cultures, HEY and OVCA 433 ovarian carcinoma cells undergo fibroblast-like morphologic changes between 3 and 5 days of ET-1 treatment. In these cells, ET-1 induces loss of adherens and tight-junction protein expression, E-cadherin, beta-catenin, and zonula occludens-1, and gain of N-cadherin and vimentin expression. These results confirm the ability of ET-1 to promote EMT, a metastable process involving sustained loss of epithelial markers and gain of mesenchymal markers. Collectively, these findings provide evidence of a critical role for the ET-1/ET(A)R axis during distinct steps of ovarian carcinoma progression, thus underlining this axis as a potential target in the treatment of ovarian cancer.

Download full-text PDF

Source

Publication Analysis

Top Keywords

epithelial mesenchymal
12
et-1
10
mesenchymal transition
8
ovarian cancer
8
et-1 promote
8
role et-1/etar
8
ovarian carcinoma
8
ovarian
6
epithelial
5
endothelin-1 required
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!