The aim of the present study was to investigate whether protein kinase C (PKC) isoforms may be among the putative candidates implicated in the primary effects of the Ang II type 2 (AT2) receptor. Western blot analyses revealed the presence of PKC alpha,epsilon, iota, and zeta in NG108-15 cells. After a 3-d treatment with 3 nm Gö6976, a specific inhibitor of classical PKC isoforms, cells were characterized by the presence of one elongated process similar to that observed after treatment with Ang II or with CGP42112, a selective AT2 receptor agonist. Similar findings were observed in cells expressing a dominant-negative mutant of PKC alpha (K368A). Inhibition of PKC alpha in NG108-15 cells also decreased cell number and proliferation. In conditions of acute stimulation, Ang II induced a time-dependent and transient inhibition of PKC alpha activity, as well as a decrease in PKC alpha levels associated with the membrane. Treatment of cells with Gö6976 was also found to inhibit p21(ras) (between 1-10 min) but stimulated Rap1 activity (1-5 min) in a time-course similar to that of Ang II. Incubation of NG108-15 cells with Gö6976 (3 nm) inhibited basal p42/p44(mapk) phosphorylation, but failed to interfere with its activation by the AT(2) receptor, indicating that inhibition of PKC alpha is not directly involved in the Rap1-MEK-p42/p44(mapk) cascade. Taken together, these results indicate that PKC alpha is a primary target of the AT2 receptor. Inhibition of PKC alpha leads to a decrease in both p21(ras) activity and cell proliferation, which may facilitate AT2 receptor signaling through p42/p44(mapk), thereby leading to neurite outgrowth.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2006-0411DOI Listing

Publication Analysis

Top Keywords

pkc alpha
36
at2 receptor
20
ng108-15 cells
16
inhibition pkc
16
pkc
12
alpha
10
protein kinase
8
type at2
8
neurite outgrowth
8
p21ras activity
8

Similar Publications

The maintenance of skeletal muscle quality involves various signal pathways that interact with each other. Under normal physiological conditions, these intersecting signal pathways regulate and coordinate the hypertrophy and atrophy of skeletal muscles, balancing the protein synthesis and degradation of muscle. When the total rate of protein synthesis exceeds that of protein degradation, the muscle gradually becomes enlarged, while when the total rate of protein synthesis is lower than that of protein degradation, the muscle shrinks.

View Article and Find Full Text PDF

Targeting Protein Kinase C-α Prolongs Survival and Restores Liver Function in Sepsis: Evidence from Preclinical Models.

Pharmacol Res

January 2025

Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Friedrich-Schiller-University Jena, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University Jena, Jena, Germany; Friedrich-Schiller-University Jena, Faculty of Medicine, Jena, Germany. Electronic address:

Sepsis is a life-threatening organ failure resulting from a poorly regulated infection response. Organ dysfunction includes hepatic involvement, weakening the immune system due to excretory liver failure, and metabolic dysfunction, increasing the death risk. Although experimental studies correlated excretory liver functionality with immune performance and survival rates in sepsis, the proteins and pathways involved remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Bladder cancer is more common in men and has high recurrence rates, particularly for non-muscle-invasive forms.
  • Transient receptor potential canonical channels (TRPCs), especially TRPC3, influence cancer cell behavior through calcium signaling, and the study investigates the effects of the TRPC3 inhibitor Pyr3 on bladder cancer cells.
  • Pyr3 treatment led to reduced cell viability, migration, and specific protein levels associated with cancer progression, indicating its potential as a therapeutic agent for bladder cancer by targeting PKC signaling.
View Article and Find Full Text PDF

This study aimed to evaluate kaempferol's, a dietary flavonoid widely present in plants, potential impact on nonalcoholic fatty liver disease (NAFLD) and its underlying mechanisms. In this study, 60 adult male rats were used and divided into a control group receiving a standard pellet diet, a kaempferol-treated group receiving kaempferol (250 mg/kg), a high-fat diet (HFD) group receiving HFD, and a kaempferol-treated HFD group. At the end of the experiment, the total lipid profile and liver enzymes were assayed in the serum.

View Article and Find Full Text PDF

Activation of Purinergic P2Y2 Receptor Protects the Kidney Against Renal Ischemia and Reperfusion Injury in Mice.

Int J Mol Sci

November 2024

Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea.

Extracellular ATP plays an important role in renal physiology as well as the pathogenesis of acute kidney injury induced by renal ischemia and reperfusion (IR). Expression of the purinergic P2Y2 receptor has been shown on inflammatory and structural cells of the kidney, and P2Y2R is preferably activated by ATP (or UTP). Here, we investigated the molecular mechanism of P2Y2R during IR injury by using P2Y2R knockout (KO) mice and a selective P2Y2R agonist, MRS2768.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!