Brain accumulation and toxicity of Mn(II) and Mn(III) exposures.

Toxicol Sci

Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA.

Published: September 2006

Concern over the neurotoxic effects of chronic moderate exposures to manganese has arisen due to increased awareness of occupational exposures and to the use of methylcyclopentadienyl manganese tricarbonyl, a manganese-containing gasoline antiknock additive. Little data exist on how the oxidation state of manganese exposure affects toxicity. The objective of this study was to better understand how the oxidation state of manganese exposure affects accumulation and subsequent toxicity of manganese. This study utilized a rat model of manganese neurotoxicity to investigate how ip exposure to Mn(II)-chloride or Mn(III)-pyrophosphate at total cumulative doses of 0, 30, or 90 mg Mn/kg body weight affected the brain region distribution and neurotoxicity of manganese. Results indicate that Mn(III) exposures produced significantly higher blood manganese levels than equimolar exposures to Mn(II). Brain manganese concentrations increased in a dose-dependent manner, with Mn(III) exposures producing significantly higher (> 25%) levels than exposures to Mn(II) but with no measurable differences in the accumulation of manganese across different brain regions. Gamma amino butyric acid concentrations were increased in the globus pallidus (GP) with manganese exposure. Dopamine (DA) levels were altered in the GP, with the highest Mn(II) and Mn(III) exposures producing significantly different DA levels. In addition, transferrin receptor and H-ferritin protein expression increased in the GP with manganese exposure. These data substantiate the heightened susceptibility of the GP to manganese, and they indicate that the oxidation state of manganese exposure may be an important determinant of tissue toxicodynamics and subsequent neurotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfl028DOI Listing

Publication Analysis

Top Keywords

manganese exposure
20
mniii exposures
16
manganese
14
oxidation state
12
state manganese
12
mnii mniii
8
exposures
8
manganese indicate
8
exposures mnii
8
concentrations increased
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!