We tested the effects of ectomycorrhizal (ECM) inoculation on greenhouse-grown white spruce (Picea glauca (Moench) Voss) and jack pine (Pinus banksiana L.) seedlings to be used for revegetation of salt-affected tailing sands resulting from the exploitation of oil sand in northeastern Alberta, Canada. White spruce and jack pine seedlings were inoculated with three ECM fungi selected for their in vitro tolerance to excess Na+ and Cl-: Hebeloma crustuliniforme (Bull) Quel. UAMH 5247, Laccaria bicolor Maire (Orton) UAMH 8232 and a Suillus tomentosus (Kauff.) Sing., Snell and Dick isolate from a salt-affected site. The physiological responses of the seedlings to a gradient of NaCl concentration (0, 50, 100 and 200 mM) were assessed over four weeks by: (1) Na+ accumulation and allocation; (2) chlorophyll a fluorescence; (3) growth, (4) water content; and (5) organic osmolyte accumulation. Jack pine seedlings were more sensitive than white spruce seedlings to increasing Na+ and Cl- concentrations. Both species showed decreasing biomass accumulation, and increasing concentrations of organic osmotica and Na with increasing NaCl concentration. White spruce seedlings inoculated with the S. tomentosus isolate had the best growth response at all NaCl concentrations tested. Although jack pine seedlings inoculated with the L. bicolor or S. tomentosus isolate exhibited the highest growth in the 50 and 100 mM NaCl treatments, both fungi increased the photochemical stress and dehydration of their hosts in the 200 mM NaCl treatment. At the latter concentration, jack pine seedlings inoculated with H. crustuliniforme showed the greatest tolerance to salt stress. Although the different fungi altered the physiological response of the host in different ways, inoculation with salt-stress-tolerant ECM fungi increased growth and reduced the negative effects of excess NaCl. Use of controlled mycorrhization may increase survival of coniferous seedlings used for revegetation of salt-affected sites.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/26.9.1185DOI Listing

Publication Analysis

Top Keywords

jack pine
20
white spruce
16
pine seedlings
16
seedlings inoculated
16
seedlings
10
physiological responses
8
picea glauca
8
pinus banksiana
8
banksiana seedlings
8
seedlings revegetation
8

Similar Publications

The Kirtland's warbler () is a rare migratory passerine species and habitat specialist of the North American Jack Pine Forests. Their near extinction in the 1970s classified them as endangered and protected under the Endangered Species Act of 1973. After decades of intense conservation management, their population size recovered, and they were delisted from federal protection in 2019.

View Article and Find Full Text PDF

Windthrow in riparian buffers affects the water quality of freshwater ecosystems in the eastern Canadian boreal forest.

Sci Rep

October 2024

Groupe de Recherche en Écologie de la MRC Abitibi (GREMA), Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, 341 Rue Principale Nord, Amos, QC, J9T 2L8, Canada.

Despite the wide application of riparian buffers in the managed boreal forest, their long-term effectiveness as freshwater protection tools remains unknown. Here, we evaluate windthrow incidence in riparian buffers in the eastern Canadian boreal forest and determine the effect of windthrow on the water quality index of the adjacent freshwater ecosystems. We studied 40 sites-20 riparian buffers, aged 10 to 20 years after harvesting and 20 control sites within intact riparian environments-distributed among clay and sandy (esker) soils and black spruce (Picea mariana) and jack pine (Pinus banksiana) stands.

View Article and Find Full Text PDF

The effect of forest composition on outdoor recreation.

J Environ Manage

July 2024

Department of Applied Economics, University of Minnesota, Saint Paul, MN, USA; Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA. Electronic address:

Climate change will shift the composition of northern Minnesota forests from boreal to temperate by the end of the century. This shift in forest composition will likely affect outdoor recreation, a valuable ecosystem service and a key economic driver for the region. In this context, the objective of our paper is to empirically examine the relationship between forest composition and recreation.

View Article and Find Full Text PDF

Decrypting Molecular Mechanisms Involved in Counteracting Copper and Nickel Toxicity in Jack Pine () Based on Transcriptomic Analysis.

Plants (Basel)

April 2024

Biomolecular Sciences Program, Department of Biology, School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada.

The remediation of copper and nickel-afflicted sites is challenged by the different physiological effects imposed by each metal on a given plant system. is resilient against copper and nickel, providing an opportunity to build a valuable resource to investigate the responding gene expression toward each metal. The objectives of this study were to (1) extend the analysis of the transcriptome exposed to nickel and copper, (2) assess the differential gene expression in nickel-resistant compared to copper-resistant genotypes, and (3) identify mechanisms specific to each metal.

View Article and Find Full Text PDF

How useful are genomic data for predicting maladaptation to future climate?

Glob Chang Biol

April 2024

Centre for Forest Conservation Genetics and Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada.

Methods using genomic information to forecast potential population maladaptation to climate change or new environments are becoming increasingly common, yet the lack of model validation poses serious hurdles toward their incorporation into management and policy. Here, we compare the validation of maladaptation estimates derived from two methods-Gradient Forests (GF) and the risk of non-adaptedness (RONA)-using exome capture pool-seq data from 35 to 39 populations across three conifer taxa: two Douglas-fir varieties and jack pine. We evaluate sensitivity of these algorithms to the source of input loci (markers selected from genotype-environment associations [GEA] or those selected at random).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!