The three isoforms of human Ins(1,4,5)P3 3-kinase (IP3K) show remarkable differences in their intracellular targeting. Whereas predominant targeting to the cytoskeleton and endoplasmic reticulum has been shown for IP3K-A and IP3K-B, rat IP3K-C shuttles actively between the nucleus and cytoplasm. In the present study we examined the expression and intracellular localisation of endogenous IP3K-C in different mammalian cell lines using an isoform-specific antibody. In addition, human IP3K-C, showing remarkable differences to its rat homologue in the N-terminal targeting domain, was tagged with EGFP and used to examine active transport mechanisms into and out of the nucleus. We found both a nuclear import activity residing in its N-terminal domain and a nuclear export activity sensitive to treatment with leptomycin B. Different from the rat isoform, an exportin 1-dependent nuclear export site of the human enzyme resides outside the N-terminal targeting domain in the catalytic enzyme domain. A phylogenetic survey of vertebrate IP3K sequences indicates that in each of the three isoforms a nuclear export signal has evolved in the catalytic domain either de novo (IP3K-A) or as a substitute for an earlier evolved corresponding N-terminal signal (IP3K-B and IP3K-C). In higher vertebrates, and in particular in primates, re-export of nuclear IP3K activity may be guaranteed by the mechanism discovered.

Download full-text PDF

Source
http://dx.doi.org/10.1515/BC.2006.075DOI Listing

Publication Analysis

Top Keywords

nuclear export
12
three isoforms
8
remarkable differences
8
n-terminal targeting
8
targeting domain
8
n-terminal
5
domain
5
nuclear
5
subcellular localisation
4
human
4

Similar Publications

Probing the functional constraints of influenza A virus NEP by deep mutational scanning.

Cell Rep

January 2025

Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA. Electronic address:

The influenza A virus nuclear export protein (NEP) is a multifunctional protein that is essential for the viral life cycle and has very high sequence conservation. However, since the open reading frame of NEP largely overlaps with that of another influenza viral protein, non-structural protein 1, it is difficult to infer the functional constraints of NEP based on sequence conservation analysis. In addition, the N-terminal of NEP is structurally disordered, which further complicates the understanding of its function.

View Article and Find Full Text PDF

Kinase translocation reporters (KTRs) are powerful tools for single-cell measurement of time-integrated kinase activity but suffer from restricted dynamic range and limited sensitivity, particularly in neurons. To address these limitations, we developed enhanced KTRs (eKTRs) for protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) by (i) increasing KTR size, which reduces the confounding effect of KTR diffusion through the nuclear pore, and (ii) modulating the strength of the bipartite nuclear localization signal (bNLS) in their kinase sensor domains, to ensures that the relative distribution of the KTR between the nucleus and cytoplasmic is determined by active nuclear import, active nuclear export, and relative activity of their cognate kinase. The resultant sets of ePKA-KTRs and eERK-KTRs display high sensitivity, broad dynamic range, and cell type-specific tuning.

View Article and Find Full Text PDF

NUCLEAR RNA-BINDING PROTEINS MEET CYTOPLASMIC VIRUSES.

RNA

January 2025

MRC University of Glasgow Centre for Virus Research, University of Glasgow.

Cytoplasmic viruses interact intricately with the nuclear pore complex and nuclear import/export machineries, affecting nuclear-cytoplasmic trafficking. This can lead to the selective accumulation of nuclear RNA-binding proteins (RBPs) in the cytoplasm. Pioneering research has shown that relocated RBPs serve as an intrinsic defence mechanism against viruses, which involves RNA export, splicing and nucleolar factors.

View Article and Find Full Text PDF

The nuclear pore complex (NPC), a multisubunit complex located within the nuclear envelope, regulates RNA export and the import and export of proteins. Here we address the role of the NPC in driving thermal stress-induced 3D genome repositioning of ( ) genes in yeast. We found that two nuclear basket proteins, Mlp1 and Nup2, although dispensable for NPC integrity, are required for driving genes into coalesced chromatin clusters, consistent with their strong, heat shock-dependent recruitment to gene regulatory and coding regions.

View Article and Find Full Text PDF

Unveiling the Movement of RanBP1 During the Cell Cycle and Its Interaction with a Cyclin-Dependent Kinase (CDK) in Plants.

Int J Mol Sci

December 2024

Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil.

In the flower development study, we identified SCI1 (Stigma/style Cell-cycle Inhibitor 1), a regulator of cell proliferation. SCI1 interacts with NtCDKG;2 ( Cyclin-Dependent Kinase G;2), a homolog of human CDK11, which is responsible for RanGTP-dependent microtubule stabilization, regulating spindle assembly rate. In a Y2H screening of a cDNA library using NtCDKG;2 as bait, a RanBP1 (Ran-Binding Protein 1) was revealed as its interaction partner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!