Glutamate receptor subtypes mediate excitatory synaptic currents of dopamine neurons in midbrain slices.

J Neurosci

Fidia-Georgetown Institute for the Neurosciences, Georgetown University, Washington, D.C. 20007.

Published: May 1991

Although dopamine (DA)-containing neurons participate in a number of important cerebral functions, the physiology of their synaptic connections is poorly understood. By using whole-cell patch-clamp recording in thin slices of rat mesencephalon, we have investigated the biophysical properties of synaptic events and the nature of neurotransmitter(s) and receptors involved in the synaptic input to DA neurons in substantia nigra. The histological and electrophysiological characteristics of these cells were consistent with those described by recent in vivo and in vitro studies, thus allowing their unequivocal identification. Under appropriate experimental conditions, intranigral stimulation produced excitatory synaptic inputs in DA neurons. By voltage-clamp analysis, most of these excitatory postsynaptic currents (EPSCs) had a rise time of about 1.0 msec and a decay phase that could be fit by the sum of two exponential curves so that a fast and a slow component could be distinguished. The slow component was enhanced by glycine, by removing Mg2+ from the bath medium, or by membrane depolarization. Moreover, the slow component was consistently decreased by selective antagonists of NMDA receptors, whereas an antagonist for the non-NMDA receptors abolished the fast component slightly affecting the slow component and reduced peak EPSC amplitude. The results indicate that both NMDA-sensitive and non-NMDA-sensitive glutamate receptors contribute to EPSCs of DA neurons. Therefore, it is suggested that these receptors may play a critical role in the physiology (control of excitability, pacemaker firing, and dendritic DA release) as well as pathology (neuronal death in Parkinson's disease, psychosis, and mechanism of action of drugs of abuse, such as ethanol) related to DA neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6575321PMC
http://dx.doi.org/10.1523/JNEUROSCI.11-05-01359.1991DOI Listing

Publication Analysis

Top Keywords

slow component
16
excitatory synaptic
8
neurons
6
synaptic
5
receptors
5
component
5
glutamate receptor
4
receptor subtypes
4
subtypes mediate
4
mediate excitatory
4

Similar Publications

Recent photolysis experiments with formic acid suggest that the roaming mechanism is a significant CO-forming pathway at a photolysis energy of 230 nm. While previous computational studies have identified multiple dissociation pathways for CO-forming channels, the dynamic features of these pathways remain poorly understood. This study investigates the dissociation dynamics of the CO + HO and CO + H channels in the ground state (S) of formic acid using direct dynamics simulation and the generalized multi-center impulsive model (GMCIM) at 230 nm.

View Article and Find Full Text PDF

This study reports the observation of complete orthogonally polarized Raman scattering (OPRS) in a 1.0-km high-birefringence fiber (HBF). An incident pump pulse at 1560 nm with an energy of 2.

View Article and Find Full Text PDF

Mathematical models on Alzheimer's disease and its treatment: A review.

Phys Life Rev

January 2025

Department of Mathematics, Presidency University, 86/1 College Street, Kolkata 700073, India. Electronic address:

Alzheimer's disease is a gradually advancing neurodegenerative disease. According to the report by "World Health Organization (WHO)", there are over 55 million individuals currently living with Alzheimer's disease and other dementia globally, and the number of sufferers is increasing every day. In absence of effective cures and preventive measures, this number is predicted to triple by 2050.

View Article and Find Full Text PDF

Droplet microfluidics enable high-throughput screening, sequencing, and formulation of biological and chemical systems at the microscale. Such devices are generally fabricated in a soft polymer such as polydimethylsiloxane (PDMS). However, developing design masks for PDMS devices can be a slow and expensive process, requiring an internal cleanroom facility or using an external vendor.

View Article and Find Full Text PDF

Background: Adamantinomatous craniopharyngiomas (ACPs) are slow-growing, cystic, highly morbid central nervous system tumors located adjacent to vital structures including the pituitary, hypothalamus, and optic chiasm. Tumor recurrence is common. Treatment relies on resection with or without adjuvant radiation and is highly individualized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!