The objective of process characterization is to demonstrate robustness of manufacturing processes by understanding the relationship between key operating parameters and final performance. Technical information from the characterization study is important for subsequent process validation, and this has become a regulatory expectation in recent years. Since performing the study at the manufacturing scale is not practically feasible, development of scale-down models that represent the performance of the commercial process is essential to achieve reliable process characterization. In this study, we describe a systematic approach to develop a bioreactor scale-down model and to characterize a cell culture process for recombinant protein production in CHO cells. First, a scale-down model using 2-L bioreactors was developed on the basis of the 2000-L commercial scale process. Profiles of cell growth, productivity, product quality, culture environments (pH, DO, pCO2), and level of metabolites (glucose, glutamine, lactate, ammonia) were compared between the two scales to qualify the scale-down model. The key operating parameters were then characterized in single-parameter ranging studies and an interaction study using this scale-down model. Appropriate operation ranges and acceptance criteria for certain key parameters were determined to ensure the success of process validation and the process performance consistency. The process worst-case condition was also identified through the interaction study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bp0504041 | DOI Listing |
PLoS One
December 2024
Department of Electrical Engineering, Stanford University, Stanford, California, United States of America.
Vis Comput Ind Biomed Art
December 2024
College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325000, China.
This study presents an energy consumption (EC) forecasting method for laser melting manufacturing of metal artifacts based on fusionable transfer learning (FTL). To predict the EC of manufacturing products, particularly from scale-down to scale-up, a general paradigm was first developed by categorizing the overall process into three main sub-steps. The operating electrical power was further formulated as a combinatorial function, based on which an operator learning network was adopted to fit the nonlinear relations between the fabricating arguments and EC.
View Article and Find Full Text PDFBMC Biol
November 2024
Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
Biotechnol Bioeng
February 2025
Biopharmaceutical Product Development, CSL Innovation GmbH, Marburg, Germany.
Process intensification has become an important strategy to lower production costs and increase manufacturing capacities for biopharmaceutical products. In particular for the production of viral vectors like lentiviruses (LVs), the transition from (fed-)batch to perfusion processes is a key strategy to meet the increasing demands for cell and gene therapy applications. However, perfusion processes are associated with higher medium consumption.
View Article and Find Full Text PDFSci Rep
November 2024
Instituto Volcanológico de Canarias (INVOLCAN), Granadilla de Abona, 38600, Spain.
The potential of the island of La Palma (Canary Islands) to host geothermal resources is very high, mainly due to its high volcanic activity. The primary goal of this study is to get a tridimensional image of the seismic intrinsic attenuation using ambient seismic noise and to identify anomalies that may be linked to active geothermal reservoirs on La Palma island. For this purpose, we developed a new Ambient Noise Attenuation Tomography (ANAT) technique, which uses seismic ambient noise for imaging intrinsic attenuation in 3-D at a local scale down to 5 km depth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!