Thrombin receptor agonist peptide (TRAP-6) may effectively replace thrombin for stimulation of damaged tissue regeneration. (Thrombin employment is limited by its high cost, instability and proinflammatory effect at high concentrations.) Immobilization of TRAP-6 into a poly(D,L)-lactide-co-glycolide (PLGA)-based matrix can protect peptides from a destruction by peptidases located in a wound area, and can also provide controlled release of the peptide. PLGA microparticles with immobilized peptide were produced by double emulsion/evaporation technique. An observation of microparticle morphology by scanning electron microscopy highlighted that peptide immobilization resulted in the increase of the microparticle porosity. TRAP-6 release kinetics was characterized by burst increase of TRAP-6 concentration in HEPES buffer solution (pH 7.5) for first 2 hours from the beginning of the experiment, and TRAP-6 complete release occurred for 20 hours. An investigation of TRAP-6 destruction by scanning electron microscopy revealed that the increase of microparticle size and surface porosity were observed already after 1 day of incubation in the buffer solution, and an aggregation of destructing microparticles was obvious by the 7th day of the incubation. Thus, peptide immobilization into PLGA microparticles can allow to develop a novel controlled release drug delivery system.
Download full-text PDF |
Source |
---|
Phys Chem Chem Phys
January 2025
Department of Applied Physics, Hebrew University, Jerusalem, Israel.
In an era of interdisciplinary scientific research, new methodologies are necessary to simultaneously advance several fields of study. One such case involves the measurement of electron spin effects on biological systems. While magnetic effects are well known in biology, recent years have shown a surge in published evidence isolating the dependence on spin, rather than magnetic field, in biological contexts.
View Article and Find Full Text PDFMolecules
December 2024
IPC-Institute for Polymers and Composites, University of Minho, 4800-056 Guimarães, Portugal.
Free pectinase is commonly employed as a biocatalyst in wine clarification; however, its removal, recovery, and reuse are not feasible. To address these limitations, this study focuses on the immobilization of a commercial pectinolytic preparation (Pec) onto highly porous polymer microparticles (MPs). Seven microparticulate polyamide (PA) supports, namely PA4, PA6, PA12 (with and without magnetic properties), and the copolymeric PA612 MP, were synthesized through activated anionic ring-opening polymerization of various lactams.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Zhejiang Key Laboratory of Clean Energy Conversion and Utilization, Science and Education Integration College of Energy and Carbon Neutralization, Zhejiang University of Technology, Hangzhou 310014, China.
Adv Colloid Interface Sci
December 2024
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:
Catalytic species such as molecular catalysts and metal catalysts are commonly attached to varieties of supports to simplify their separation and recovery and accommodate various reaction conditions. The physicochemical microenvironments surrounding catalytic species play an important role in catalytic performance, and the rational design and engineering of microenvironments can achieve more efficient chemical synthesis, leading to greener and more sustainable catalysis. In this review, we highlight recent works addressing the topic of the design and engineering of microenvironments of supported catalysts, including supported molecular catalysts and supported metal catalysts.
View Article and Find Full Text PDFEnzyme Microb Technol
February 2025
VBlab - Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro P-3810-193, Portugal. Electronic address:
Contamination of water with mercury constitutes a serious public health problem, especially in locations where the use of Hg occurs improperly/illegally and negligently, as is the case in the Amazon region (Brazil). The riverside populations in the Amazon are frequently invaded by illegal mining, exposing these populations to significant risks, of which contamination by heavy metals such as mercury (Hg) has the potential to cause serious illnesses. Furthermore, exposure to this metal causes neurological, cardiovascular, immune and digestive system disorders, in addition to damaging the lungs, kidneys, skin and eyes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!