Neuroproteomics - the tasks lying ahead.

Electrophoresis

Abteilung Tierphysiologie, Fachbereich Biologie, Technische Universität Kaiserslautern, Germany.

Published: July 2006

The brain is unquestionably the most fascinating organ. Despite tremendous progress, current knowledge falls short of being able to explain its function. An emerging approach toward improved understanding of the molecular mechanisms underlying brain function is neuroproteomics. Today's neuroscientists have access to a battery of versatile technologies both in transcriptomics and proteomics. The challenge is to choose the right strategy in order to generate new hypotheses on how the brain works. The goal of this review is therefore two-fold: first we recall the bewildering cellular, molecular, and functional complexity in the brain, as this knowledge is fundamental to any study design. In fact, an impressive complexity on the molecular level has recently re-emerged as a central theme in large-scale analyses. Then we review transcriptomics and proteomics technologies, as both are complementary. Finally, we comment on the most widely used proteomics techniques and their respective strengths and drawbacks. We conclude that for the time being, neuroproteomics should focus on its strengths, namely the identification of posttranslational modifications and protein-protein interactions, as well as the characterization of highly purified subproteomes. For global expression profiling, emphasis should be put on further development to significantly increase coverage.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.200500892DOI Listing

Publication Analysis

Top Keywords

transcriptomics proteomics
8
neuroproteomics tasks
4
tasks lying
4
lying ahead
4
brain
4
ahead brain
4
brain unquestionably
4
unquestionably fascinating
4
fascinating organ
4
organ despite
4

Similar Publications

Noncoding satellite DNA repeats are abundant at the pericentromeric heterochromatin of eukaryotic chromosomes. During interphase, sequence-specific DNA-binding proteins cluster these repeats from multiple chromosomes into nuclear foci known as chromocenters. Despite the pivotal role of chromocenters in cellular processes like genome encapsulation and gene repression, the associated proteins remain incompletely characterized.

View Article and Find Full Text PDF

Background: Cancer immunotherapy has transformed metastatic cancer treatment, yet challenges persist regarding therapeutic efficacy. RECQL4, a RecQ-like helicase, plays a central role in DNA replication and repair as part of the DNA damage response, a pathway implicated in enhancing efficacy of immune checkpoint inhibitor (ICI) therapies. However, its role in patient response to ICI remains unclear.

View Article and Find Full Text PDF

Parkinson's disease is a complex neurodegenerative disorder characterized by degeneration of dopaminergic neurons, with patients manifesting varying motor and nonmotor symptoms. Previous studies using single-cell RNA sequencing in rodent models and humans have identified distinct heterogeneity of neurons and glial cells with differential vulnerability. Recent studies have increasingly leveraged multiomics approaches, including spatial transcriptomics, epigenomics, and proteomics, in the study of Parkinson's disease, providing new insights into pathogenic mechanisms.

View Article and Find Full Text PDF

Using Multi-Omics Methods to Understand Gouty Arthritis.

Curr Rheumatol Rev

January 2025

Department of Rheumatology, Beijing Jishuitan Hospital, Guizhou Hospital, China.

Gouty arthritis is a common arthritic disease caused by the deposition of monosodium urate crystals in the joints and the tissues around it. The main pathogenesis of gout is the inflammation caused by the deposition of monosodium urate crystals. Omics studies help us evaluate global changes in gout during recent years, but most studies used only a single omics approach to illustrate the mechanisms of gout.

View Article and Find Full Text PDF

Appetite, as the internal drive for food intake, is often dysregulated in a broad spectrum of conditions associated with over- and under-nutrition across the lifespan. Appetite regulation is a complex, integrative process comprising psychological and behavioral events, peripheral and metabolic inputs, and central neurotransmitter and metabolic interactions. The microbiota-gut-brain axis has emerged as a critical mediator of multiple physiological processes, including energy metabolism, brain function, and behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!