An improved procedure for Percoll gradient separation of sporogonial stages in Encephalitozoon cuniculi (Microsporidia).

Parasitol Res

Equipe Parasitologie Moléculaire et Cellulaire, LBP, UMR CNRS 6023, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière Cedex, France.

Published: November 2006

Intracellular development of microsporidian parasites comprises a proliferative phase (merogony) followed by a differentiation phase (sporogony) leading to the release of resistant spores. Sporogony implies, successively, meront-to-sporont transformation, sporont division into sporoblasts, and sporogenesis. We report a procedure improving the separation of sporogonial stages of Encephalitozoon cuniculi, a species that develops inside parasitophorous vacuoles of mammalian cells. Supernatants of E. cuniculi-infected Madin-Darby canine kidney cell cultures provided a large number of parasites mixed with host-cell debris. This material was gently homogenized in phosphate-buffered saline containing 0.05% saponin and 0.05% Triton X-100 then filtered through glass wool columns. Centrifugation of the filtrate on 70% Percoll-0.23 M sucrose gradient gave a reproducible pattern of bands at different densities. Transmission electron microscopy showed that three of the four collected fractions were free of visible contaminants. Corresponding prominent cell stages were early sporoblasts (fraction B), late sporoblasts plus immature spores (fraction C), and mature spores (fraction D). Further centrifugation of the lightest fraction (A) on 30% Percoll-0.23 M sucrose gradient generated a sporont-rich fraction (A2). First analysis of proteins from fractions A2 and D by two-dimensional gel electrophoresis suggested a potential use of the described method for proteomic profiling.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00436-006-0231-yDOI Listing

Publication Analysis

Top Keywords

separation sporogonial
8
sporogonial stages
8
stages encephalitozoon
8
encephalitozoon cuniculi
8
percoll-023 sucrose
8
sucrose gradient
8
spores fraction
8
fraction
5
improved procedure
4
procedure percoll
4

Similar Publications

Background: Hepatozoon fitzsimonsi (Dias, 1953) is a frequently found haemogregarine of southern African tortoises. At the time of this species' reassignment from the genus Haemogregarina to Hepatozoon, developmental stages such as sporocysts and sporozoites were observed in ticks associated with H. fitzsimonsi parasitised and non-parasitised tortoises.

View Article and Find Full Text PDF

A new microsporidian parasite, Naidispora caidianensis n. gen. n.

View Article and Find Full Text PDF

Malaria parasites are transmitted by mosquitoes and a substantial part of the parasite's complex life cycle takes place inside the insect. Parasite transmission starts with the uptake of parasite stages called gametocytes from the vertebrate host with the blood meal of a female vector mosquito, completing several weeks later with the injection of parasite stages called sporozoites into the vertebrate host by mosquito bite. The sporozoites form in their thousands inside ookinete-derived oocysts situated on the abluminal side of the mosquito midgut epithelium by a process of cell division known as sporogony.

View Article and Find Full Text PDF

Genome editing in the malaria parasite Plasmodium relies on homologous recombination and requires parasite transfection in asexual blood stages. Therefore, conditional genetic approaches are needed to delete genes that are essential during blood stage replication. Among these, the dimerizable Cre (DiCre) recombinase system has emerged as a powerful approach for conditional gene knockout in Plasmodium parasites.

View Article and Find Full Text PDF

Haplosporosomes, sporoplasmosomes and their putative taxonomic relationships in rhizarians and myxozoans.

Parasitology

December 2020

Laboratory of Cell Biology, Institute of Biomedical Sciences (ICBAS/UP), University of Porto, 4050-313Porto, Portugal.

This paper reviews current knowledge of the structure, genesis, cytochemistry and putative functions of the haplosporosomes of haplosporidians (Urosporidium, Haplosporidium, Bonamia, Minchinia) and paramyxids (Paramyxa, Paramyxoides, Marteilia, Marteilioides, Paramarteilia), and the sporoplasmosomes of myxozoans (Myxozoa - Malacosporea, Myxosporea). In all 3 groups, these bodies occur in plasmodial trophic stages, disappear at the onset of sporogony, and reappear in the spore. Some haplosporidian haplosporosomes lack the internal membrane regarded as characteristic of these bodies and that phylum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!