The development of a number of different solid tumours is associated with over-expression of ErbB1, or the epidermal growth factor receptor (EGFR), and this over-expression is often correlated with poor prognosis of patients. Therefore, this receptor tyrosine kinase is considered to be an attractive target for antibody-based therapy. Indeed, antibodies to the EGFR have already proven their value for the treatment of several solid tumours, especially in combination with chemotherapeutic treatment regimens. Variable domains of camelid heavy chain-only antibodies (called Nanobodies) have superior properties compared with classical antibodies in that they are small, very stable, easy to produce in large quantities and easy to re-format into multi-valent or multi-specific proteins. Furthermore, they can specifically be selected for a desired function by phage antibody display. In this report, we describe the successful selection and the characterisation of antagonistic anti-EGFR Nanobodies. By using a functional selection strategy, Nanobodies that specifically competed for EGF binding to the EGFR were isolated from "immune" phage Nanobody repertoires. The selected antibody fragments were found to efficiently inhibit EGF binding to the EGFR without acting as receptor agonists themselves. In addition, they blocked EGF-mediated signalling and EGF-induced cell proliferation. In an in vivo murine xenograft model, the Nanobodies were effective in delaying the outgrowth of A431-derived solid tumours. This is the first report describing the successful use of untagged Nanobodies for the in vivo treatment of solid tumours. The results show that functional phage antibody selection, coupled to the rational design of Nanobodies, permits the rapid development of novel anti-cancer antibody-based therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11030579 | PMC |
http://dx.doi.org/10.1007/s00262-006-0180-4 | DOI Listing |
Vaccines (Basel)
December 2024
Section of Pediatric Oncology and Cellular Therapy, Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, AB T2N 1N4, Canada.
Vaccine hesitancy among immunocompromised patients is complex and not well understood. This study aimed to determine the rate of COVID-19 vaccine hesitancy among pediatric oncology and bone marrow transplant (BMT) patients and to understand associated factors. : Parents of patients (≤18 years) with cancer or post-BMT completed the Parent Attitudes about Childhood Vaccines Survey.
View Article and Find Full Text PDFVaccines (Basel)
November 2024
Laboratory of Drug Discovery from Natural Resources and Industrialization, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China.
Tumor vaccine is a promising immunotherapy for solid tumors. Therapeutic tumor vaccines aim at inducing tumor regression, establishing durable antitumor memory, and avoiding non-specific or adverse reactions. However, tumor-induced immune suppression and immune resistance pose challenges to achieving this goal.
View Article and Find Full Text PDFPharmaceutics
November 2024
Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62209, Mexico.
Doxorubicin (Dox) is an anticancer drug used in the treatment of a wide range of solid tumors; however, Dox causes systemic toxicity and irreversible cardiotoxicity. The design of a new nanosystem that allows for the control of Dox loading and delivery results is a powerful tool to control Dox release only in cancer cells. For this reason, supramolecular self-assembly was performed between a poly(amidoamine) (PAMAM) dendrimer decorated with four β-cyclodextrin (βCD) units (PAMAM-βCD) and an adamantane-hydrazone-doxorubicin (Ad-h-Dox) prodrug.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department "Pharmacology, Pharmacotherapy and Toxicology", Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria.
The present review provides a detailed and comprehensive discussion on antibody-drug conjugates (ADCs) as an evolving new modality in the current therapeutic landscape of malignant diseases. The principle concepts of targeted delivery of highly toxic agents forsaken as stand-alone drugs are examined in detail, along with the biochemical and technological tools for their successful implementation. An extensive analysis of ADCs' major components is conducted in parallel with their function and impact on the stability, efficacy, safety, and resistance profiles of the immunoconjugates.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Anatomy, Biophysics and Physiology, Faculty of Biology, University of Bucharest, Spl. Independentei 91-95, 050095 Bucharest, Romania.
The expression of the transient receptor potential 1 (TRPA1) gene is increased in many solid tumours, and its function relates to inflammation, oxidative stress or the presence of toxic substances. However, little is known about the correlation of clinical parameters with patients' cancer stages, metastases and the degree of tumour infiltration by immune cells. We performed a bioinformatic analysis, using databases and public resources to investigate TRPA1 for many available samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!