Assessing impact of urbanization on river water quality in the Pearl River Delta Economic Zone, China.

Environ Monit Assess

Key Laboratory of Margin Sea Geology, Guangzhou Institute of Geochemistry,Chinese Academy of Sciences, Wushan, Guangdong, 510640, PR China.

Published: September 2006

AI Article Synopsis

  • The Pearl River Delta Economic Zone, a highly developed region in China, has experienced rapid urbanization since 1978, significantly affecting river water quality.
  • The study aimed to evaluate how urbanization influences river pollution levels, utilizing Landsat TM images from 2000 and a synthetic pollution index method for assessment.
  • Findings revealed a direct link between urbanization speed and increased pollution, showing that urban rivers are more polluted than rural ones, highlighting the negative environmental impact of urban development.

Article Abstract

The Pearl River Delta Economic Zone is one of the most developed regions in China. It has been undergoing a rapid urbanization since the reformation and opening of China in 1978. This process plays a significant impact on the urban environment, particularly river water quality. The main goal of this present study is to assess the impact of urban activities especially urbanization on river water quality for the study area. Some Landsat TM images from 2000 were used to map the areas for different pollution levels of urban river sections for the study area. In addition, an improved equalized synthetic pollution index method was utilized to assess the field analytical results. The results indicate that there is a positive correlation between the rapidity of urbanization and the pollution levels of urban river water. Compared to the rural river water, urban river water was polluted more seriously. During the urban development process, urbanization and urban activities had a significant negative impact on the river water quality.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-005-9064-xDOI Listing

Publication Analysis

Top Keywords

river water
28
water quality
16
urban river
12
river
10
urbanization river
8
pearl river
8
river delta
8
delta economic
8
economic zone
8
impact urban
8

Similar Publications

In fluvial environments, the shifting of river channels and bank erosion are frequently caused by both natural and anthropogenic factors. Riverine hazards like bank erosion and course alterations offer severe issues to the riparian villages along the lower basin of the Tista River in India, which substantially influence the livelihoods of inhabitants living there. This research addressed river channel shifting tendency and identified major bank erosion-prone villages along the lower course of the Tista River and challenges to the livelihoods of the riparian people.

View Article and Find Full Text PDF

Legacy and emerging Organophosphate flame retardants (OPFRs) in water and sediment from the Pearl River Delta to the adjacent coastal waters of the South China Sea: Spatioseasonal variations, flux estimation and ecological risk.

Environ Pollut

January 2025

Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China. Electronic address:

The industrialization and urbanization along the Pearl River Delta (PRD) have exacerbated the issue of pollution in aquatic environments by organophosphate flame retardants (OPFRs). Historical cumulative pollution from legacy OPFRs, combined with newly emerging OPFRs, has increased the severity and complexity of OPFR pollution in this region. We explored the contamination profile, input flux and risk of legacy and emerging OPFRs in surface waters and in sediment samples of the PRD.

View Article and Find Full Text PDF

Despite their potential risks to human health and the environment at ng/L to μg/L concentrations, there has been relatively little effort to measure trace organic compounds (TOrCs) in surface waters of Central America. The concentrations of eighteen TOrCs detected at eleven surface water sites in the Lempa River basin of El Salvador and four sources of drinking water for the cities of San Salvador, Antiguo Cuscatlán, Soyapango, and Santa Tecla are reported here. All samples were analyzed via liquid chromatography with tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

Urban rivers are the main water bodies humans frequently come into contact with, so the risks posed are closely monitored. Antibiotic resistance genes (ARGs) residues in reclaimed water pose serious risks to human health. There are urgent needs to improve the understanding of distribution of and risks posed by ARGs in urban rivers.

View Article and Find Full Text PDF

An in-situ study in the Xijiang River basin revealed adverse effects of total dissolved gas supersaturation on fish.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China.

High dam discharge can lead to total dissolved gas (TDG) supersaturation in downstream rivers, causing fish to suffer from bubble trauma and even mortality. Focusing on the Datengxia hydropower station in the Xijiang River basin, we conducted in-situ experiments to explore the tolerance patterns of economic fish species, including Ctenopharyngodon idella, Hypophthalmichthys molitrix, and Cirrhinus molitorella, under the influence of TDG supersaturation at different compensation depths. Moreover, the development and recovery patterns of bubble trauma and the swimming ability of fish exposed to TDG supersaturated water were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!