Implantable biomaterials are one of the most useful tools in the surgeon's armamentarium, yet there is much room for improvement. Chronic pain, tissue erosion, and late infections are just a few of the serious complications that can occur with conventional, inert materials. In contrast, tissue-inductive materials exist today. Combinations of biologically important molecules for directing cell growth and providing structural stability can be found in naturally occuring extracellular matrices. These "soft-tissue skeletons" of Mother Nature can be harvested, processed, and provided in a medically safe and biologically active form for repairing many different tissues in the human body. The future of surgical practice may well be determined by how well these new implant materials recreate the tissues they replace.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00192-006-0104-z | DOI Listing |
Int J Oral Sci
January 2025
Department of Cariology and Endodontics, Wuhan University & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
Pulpotomy, which belongs to vital pulp therapy, has become a strategy for managing pulpitis in recent decades. This minimally invasive treatment reflects the recognition of preserving healthy dental pulp and optimizing long-term patient-centered outcomes. Pulpotomy is categorized into partial pulpotomy (PP), the removal of a partial segment of the coronal pulp tissue, and full pulpotomy (FP), the removal of whole coronal pulp, which is followed by applying the biomaterials onto the remaining pulp tissue and ultimately restoring the tooth.
View Article and Find Full Text PDFCell Death Dis
January 2025
State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China.
Immune checkpoint inhibitors (ICIs) have significant therapeutic effects but can also cause fatal lung injury. However, the lack of mouse animal models of ICI-related lung injury (ICI-LI) has limited the in-depth exploration of its pathogenesis. In clinical practice, underlying lung diseases increase the risk of lung injury.
View Article and Find Full Text PDFJ Proteome Res
January 2025
NCR Biotech Science Cluster, Regional Centre for Biotechnology, Faridabad 121001, India.
Preterm birth (PTB) refers to the delivery of a baby before the completion of 37 weeks of gestation. It is a significant global health issue with implications for both mothers and neonates. The placenta is a transient organ crucial in the sustenance of pregnancy until parturition; its dysfunction is associated with different adverse pregnancy outcomes, including PTB.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People's Republic of China
Background: Tumor cells can drive the senescence of effector T cells by unbalancing their lipid metabolism, thereby limiting adoptive T cell therapy and contributing to tumor immune evasion. Our objective is to provide a feasible strategy for enhancing T cell treatment efficacy against solid tumors.
Methods: In this study, liposomal arachidonyl trifluoromethyl ketone (ATK) was anchored onto the adoptive T cell surface via bioorthogonal reactions, aiming to specifically inhibit the group IVA cytosolic phospholipase Aα (cPLAα), a key enzyme facilitating phospholipid metabolism and senescent state of T cells.
Phys Med Biol
January 2025
Department of Electrical and Electronic Engineering, The University of Hong Kong, Chow Yei Ching 506, Hong Kong, 999077, HONG KONG.
. The propagation speed of a shear wave, whether externally or internally induced, in biological tissues is directly linked to the tissue's stiffness. The group shear wave speed (SWS) can be estimated using a class of time-of-flight (TOF) methods in the time-domain or phase speed-based methods in the frequency domain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!