Neuronal synapses play fundamental roles in information processing, behaviour and disease. Neurotransmitter receptor complexes, such as the mammalian N-methyl-D-aspartate receptor complex (NRC/MASC) comprising 186 proteins, are major components of the synapse proteome. Here we investigate the organisation and function of NRC/MASC using a systems biology approach. Systematic annotation showed that the complex contained proteins implicated in a wide range of cognitive processes, synaptic plasticity and psychiatric diseases. Protein domains were evolutionarily conserved from yeast, but enriched with signalling domains associated with the emergence of multicellularity. Mapping of protein-protein interactions to create a network representation of the complex revealed that simple principles underlie the functional organisation of both proteins and their clusters, with modularity reflecting functional specialisation. The known functional roles of NRC/MASC proteins suggest the complex co-ordinates signalling to diverse effector pathways underlying neuronal plasticity. Importantly, using quantitative data from synaptic plasticity experiments, our model correctly predicts robustness to mutations and drug interference. These studies of synapse proteome organisation suggest that molecular networks with simple design principles underpin synaptic signalling properties with important roles in physiology, behaviour and disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1681474 | PMC |
http://dx.doi.org/10.1038/msb4100041 | DOI Listing |
ACS Chem Neurosci
January 2025
Departments of Psychiatry and Neurology, Division of Molecular Therapeutics, New York State Psychiatric Institute, Columbia University Medical Center, New York, New York 10032, United States.
Voluntary movement, motivation, and reinforcement learning depend on the activity of ventral midbrain neurons, which extend axons to release dopamine (DA) in the striatum. These neurons exhibit two patterns of action potential activity: low-frequency tonic activity that is intrinsically generated and superimposed high-frequency phasic bursts that are driven by synaptic inputs. acute striatal brain preparations are widely employed to study the regulation of evoked DA release but exhibit very different DA release kinetics than recordings.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Diabetes and Endocrine Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan.
Omega-3 (ω-3) polyunsaturated fatty acids in fish oil have been shown to prevent diet-induced obesity in lean mice and to promote heat production in adipose tissue. However, the effects of fish oil on obese animals remain unclear. This study investigated the effects of fish oil in obese mice.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia.
Sleep is the most important physiological function of all animals studied to date. Sleep disorders include narcolepsy, which is characterized by excessive daytime sleepiness, disruption of night sleep, and muscle weakness-cataplexy. Narcolepsy is known to be caused by the degeneration of orexin-synthesizing neurons (hypocretin (HCRT) neurons or orexin neurons) in the hypothalamus.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea.
To elucidate the potential roles of presynaptic and postsynaptic serotonergic activity in impulsivity traits, we investigated the relationship between self-reported impulsiveness and serotonin transporter (5-HTT) and 5-HT2A receptors in healthy individuals. In this study, 26 participants completed 3-Tesla magnetic resonance imaging and positron emission tomography with [C]DASB and [C]MDL100907. To quantify 5-HTT and 5-HT2A receptor availability, the binding potential (BP) of [C]DASB and [C]MDL100907 was derived using the simplified reference tissue model with cerebellar gray matter as the reference region.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
Spinal cord injury (SCI) results in functional deficits below the injured spinal level. The descending serotonergic system in the spinal cord is critically involved in the control of motor and autonomic functions. Specifically, SCI damages the projections of serotonergic fibers, which leads to reduced serotonin inputs and increased amounts of spinal serotonergic receptors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!