A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tetrahydrobiopterin protects against guanabenz-mediated inhibition of neuronal nitric-oxide synthase in vitro and in vivo. | LitMetric

Tetrahydrobiopterin protects against guanabenz-mediated inhibition of neuronal nitric-oxide synthase in vitro and in vivo.

Drug Metab Dispos

Department of Pharmacology, University of Michigan Medical School, 1301 Medical Science Research Building III, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0632, USA.

Published: September 2006

It is established that guanabenz inhibits neuronal nitric-oxide (NO) synthase (nNOS) and causes the enhanced proteasomal degradation of nNOS in vivo. Although the time- and NADPH-dependent inhibition of nNOS has been reported in studies where guanabenz was incubated with crude cytosolic preparations of nNOS, the exact mechanism for inhibition is not known. Moreover, even less is known about how the inhibition of nNOS triggers its proteasomal degradation. In the current study, we show, with the use of purified nNOS, that guanabenz treatment leads to the oxidation of tetrahydrobiopterin and formation of a pterin-depleted nNOS, which is not able to form NO. With the use of 14C-labeled guanabenz, we were unable to detect any guanabenz metabolites or guanabenz-nNOS adducts, indicating that reactive intermediates of guanabenz probably do not play a role in the inhibition. Superoxide dismutase, however, prevents the guanabenz-mediated oxidation of tetrahydrobiopterin and inhibition of nNOS, suggesting the role of superoxide as an intermediate. Studies in rats show that administration of tetrahydrobiopterin prevents the inhibition and loss of penile nNOS due to guanabenz, indicating that the loss of tetrahydrobiopterin plays a major role in the effects of guanabenz in vivo. Our findings are consistent with the destabilization and enhanced degradation of nNOS found after tetrahydrobiopterin depletion. These studies suggest that drug-mediated destabilization and subsequent enhanced degradation of protein targets will likely be an important toxicological consideration.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.106.009951DOI Listing

Publication Analysis

Top Keywords

inhibition nnos
12
nnos
10
neuronal nitric-oxide
8
nitric-oxide synthase
8
guanabenz
8
proteasomal degradation
8
degradation nnos
8
nnos guanabenz
8
oxidation tetrahydrobiopterin
8
enhanced degradation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!