Transporters on demand: intracellular reservoirs and cycling of bile canalicular ABC transporters.

J Biol Chem

Unit on Cellular Polarity, Cell Biology and Metabolism Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA.

Published: September 2006

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.R600013200DOI Listing

Publication Analysis

Top Keywords

transporters demand
4
demand intracellular
4
intracellular reservoirs
4
reservoirs cycling
4
cycling bile
4
bile canalicular
4
canalicular abc
4
abc transporters
4
transporters
2
intracellular
1

Similar Publications

This paper proposes a hybrid stochastic-robust optimization framework for sizing a photovoltaic/tidal/fuel cell (PV/TDL/FC) system to meet an annual educational building demand based on hydrogen storage via unscented transformation (UT), and information gap decision theory-based risk-averse strategy (IGDT-RA). The hybrid framework integrates the strengths of UT for scenario generation and IGDT-RA (hybrid UT-IGDT-RA) for optimizing the system robustness and maximum uncertainty radius (MRU) of building energy demand and renewable resource generation. The deterministic model focuses on minimizing the cost of energy production over the project's lifespan (CEPLS) and considers a reliability constraint defined as the demand shortage probability (DSHP).

View Article and Find Full Text PDF

Production scheduling with multi-robot task allocation in a real industry 4.0 setting.

Sci Rep

January 2025

Laboratoire d'Ingenierie des Systemes Physiques et Numeriques, 59046, Lille, France.

The demand for efficient Industry 4.0 systems has driven the need to optimize production systems, where effective scheduling is crucial. In smart manufacturing, robots handle material transfers, making precise scheduling essential for seamless operations.

View Article and Find Full Text PDF

Absence of MCJ/DnaJC15 promotes brown adipose tissue thermogenesis.

Nat Commun

January 2025

Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.

Obesity poses a global health challenge, demanding a deeper understanding of adipose tissue (AT) and its mitochondria. This study describes the role of the mitochondrial protein Methylation-controlled J protein (MCJ/DnaJC15) in orchestrating brown adipose tissue (BAT) thermogenesis. Here we show how MCJ expression decreases during obesity, as evident in human and mouse adipose tissue samples.

View Article and Find Full Text PDF

Enhancing CO Oversaturation in the Confined Water Enables Superior Gas Selectivity of 2D Membranes.

J Phys Chem Lett

January 2025

Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.

Due to the global demands on carbon neutralization, CO separation membranes, particularly those based on two-dimensional (2D) materials, have attracted increasing attention. However, recent works have focused on the chemical decoration of membranes to realize the selective transport, leading to the compromised stability in the presence of moisture. Herein, we develop a series of 2D capillaries based on layered double hydroxide (LDH), graphene oxide, and vermiculite to enhance the oversaturation of CO in the confined water for promoting the membrane permselectivity.

View Article and Find Full Text PDF

In response to the demand for advanced tools in environmental monitoring and policy formulation, this work leverages modern software and big data technologies to enhance novel road transport emissions research. This is achieved by making data and analysis tools more widely available and customisable so users can tailor outputs to their requirements. Through the novel combination of vehicle emissions remote sensing and cloud computing methodologies, these developments aim to reduce the barriers to understanding real-driving emissions (RDE) across urban environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!