Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We investigated the potential of commercially available porous templates to be used for the fabrication of functional anisotropic conductors. A galvanostatic deposition technique was used to fabricate arrays consisting of 200 nm diameter nanowires inside the pores of polycarbonate membranes. A tape lift-off procedure allowed the complete removal of any residual metal from both sides of the polymer membrane to form an anisotropic conductive film. The 10 microm thick film has roughly 3 x 10(8) nanowires per cm2, and it showed near zero electrical resistance perpendicular to the surface while appearing completely open to circuits between any points on the surface. The preparation of the film, characterization using SEM, AFM, and resistance measurements are presented. The 1D conductivity of these membranes may have many potential applications for microelectronic interconnects for packaging technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2006.191 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!