This work reports about the thermal stability of the blue thermoluminescence (TL) of a well-characterised natural bentonite from Almeria (Spain). The main interest of this clay, mainly composed of montmorillonite, is because of its application in the field of high-level radioactive waste (HLW) repository in deep-lying rocks. As observed in other aluminosilicates, bentonite exhibits a very complex structure of the emission spectra based on a wide broad maximum peaked at approximately 265 degrees C that can be associated to physico-chemical processes such as dehydroxylation processes, consecutive breaking linking of bonds, formation of hydrolysed ions and redox reactions. The thermal stability tests performed at different temperatures confirm a continuum in the distribution of traps. Hence, the glow curve analysis methods commonly used for synthetic materials based on single discrete traps cannot be applied for this material and the kinetic parameters were fitted assuming an exponential distribution of trapped electrons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/rpd/nci613 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!