Membrane cofactor protein CD46 controls complement activation on cells, is a receptor for several pathogens, and modulates immune responses by affecting CD8(+) T cells. Cells can release CD46 in an intact form on membrane vesicles and in a truncated form by a metalloproteolytic cleavage. The mechanism of shedding and its relationship to cell physiology has remained unclear. We have found using RNA interference analysis that a disintegrin and metalloproteinase (ADAM) 10 is responsible for the regulated shedding of the ectodomain of CD46 in apoptotic cells. The shedding of CD46 was initiated with staurosporine and UVB. Exposure of cell cultures to either UVB or staurosporine resulted in changes of cell morphology and detachment of cells from their matrices within 8-24 h. During this process CD46 was released both in apoptotic vesicles (vCD46) and proteolytically (sCD46) into the medium. Both the metalloproteinase inhibitor GM6001 and RNA interference of ADAM10 completely prevented the release of sCD46 and increased the expression of vCD46 on HaCaT cell vesicles, suggesting that ADAM10 releases sCD46 from the apoptotic vesicles. To explore whether the release of sCD46 is associated with apoptosis we analyzed the effects of caspase inhibitors. As expected, the inhibition of caspase activity attenuated the characteristic features of apoptosis and also decreased the release of sCD46. Our results reveal ADAM10 as an important regulator of CD46 expression during apoptosis. The ADAM10-mediated release of CD46 from apoptotic vesicles may represent a form of strategy to allow restricted complement activation to deal with modified self.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M602053200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!