Proteasome inhibitors are currently used as chemotherapeutic drugs because of their ability to block NF-kappaB, a transcription factor constitutively activated in many different types of human cancer. In the present study, we demonstrate that proteasome inhibitors induce cell death in endometrial carcinoma cell lines and primary explants but, instead of blocking NF-kappaB, they increase its transcriptional activity. Proteasome inhibitors induce phosphorylation of IKK alpha/beta, phosphorylation and degradation of IkappaB alpha, and phosphorylation of the p65 NF-kappaB subunit on serine 536. Proteasome inhibitor-induced NF-kappaB activity can be blocked by a non-degradable form of IkappaB alpha or dominant negative forms of either IKK alpha or IKK beta. Lentiviral delivery of shRNAs to either IKK alpha or IKK beta cause blockade of NF-kappaB transcriptional activity and inhibit phosphorylation of p65 on serine 536, but has no effect on IkappaB alpha degradation. These results suggest a role for p65 phosphorylation in proteasome inhibitor-induced NF-kappaB activation. Accordingly, siRNA knockdown of p65 inhibits proteasome inhibitor-induced NF-kappaB transcriptional activity. Our results demonstrate that proteasome inhibitors, including bortezomib, induce cell death on endometrial carcinoma cells and primary explants. However, they activate NF-kappaB instead of blocking its transcriptional potential. Therefore, the concept that proteasome inhibitors are blockers of NF-kappaB activation should be carefully examined in particular cell types.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M601350200DOI Listing

Publication Analysis

Top Keywords

proteasome inhibitors
24
inhibitors induce
12
endometrial carcinoma
12
transcriptional activity
12
ikappab alpha
12
proteasome inhibitor-induced
12
inhibitor-induced nf-kappab
12
nf-kappab
10
proteasome
9
activate nf-kappab
8

Similar Publications

Background: Proteasomes degrade intracellular proteins. Different proteasome forms were identified. Proteasome inhibitors are used in cancer therapy, and novel drugs directed to specific proteasome forms are developed.

View Article and Find Full Text PDF

P4HA3 depletion induces ferroptosis and inhibits colorectal cancer growth by stabilizing ACSL4 mRNA.

Biochem Pharmacol

January 2025

Department of General Surgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China; Department of General Surgery, Jiangnan University Medical Center, Wuxi, China. Electronic address:

Colorectal cancer (CRC) is a malignancy with high global incidence and mortality rates, posing a serious threat to human health. Despite favorable outcomes following early detection and surgical intervention, the asymptomatic nature of CRC often results in delayed diagnoses, limiting surgical treatment options. Furthermore, effective therapeutic drugs for CRC remain lacking in clinical practice, highlighting an urgent need to identify novel therapeutic targets.

View Article and Find Full Text PDF

Aspirin-based PROTACs as COX-2 degraders for anti-inflammation.

Bioorg Med Chem

January 2025

Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China. Electronic address:

Cyclooxygenase-2 (COX-2) is a key enzyme in the biosynthesis of prostaglandins and plays a special role in the process of inflammatory response. COX-2 is a target of non-steroidal anti-inflammatory drugs (NSAIDs), which can effectively relieve inflammation, pain and fever responses by inhibiting COX-2. Despite the significant study progress of inhibitors targeting COX-2, the development of COX-2 degraders remains insufficient.

View Article and Find Full Text PDF

Unraveling the Role of Ubiquitin-Conjugating Enzyme UBE2T in Tumorigenesis: A Comprehensive Review.

Cells

December 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China.

Ubiquitin-conjugating enzyme E2 T (UBE2T) is a crucial E2 enzyme in the ubiquitin-proteasome system (UPS), playing a significant role in the ubiquitination of proteins and influencing a wide range of cellular processes, including proliferation, differentiation, apoptosis, invasion, and metabolism. Its overexpression has been implicated in various malignancies, such as lung adenocarcinoma, gastric cancer, pancreatic cancer, liver cancer, and ovarian cancer, where it correlates strongly with disease progression. UBE2T facilitates tumorigenesis and malignant behaviors by mediating essential functions such as DNA repair, apoptosis, cell cycle regulation, and the activation of oncogenic signaling pathways.

View Article and Find Full Text PDF

Ferroptosis is a form of cell death elicited by an imbalance in intracellular iron concentrations, leading to enhanced lipid peroxidation. In neurological disorders, both oxidative stress and mitochondrial damage can contribute to ferroptosis, resulting in nerve cell dysfunction and death. The ubiquitin-proteasome system (UPS) refers to a cellular pathway in which specific proteins are tagged with ubiquitin for recognition and degradation by the proteasome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!