Macrolide resistance in Campylobacter jejuni and Campylobacter coli.

J Antimicrob Chemother

Department of Medical Microbiology and Immunology, University of Alberta Edmonton, Alberta, Canada.

Published: August 2006

Infection with Campylobacter jejuni is now considered to be the most common cause of acute bacterial gastroenteritis in humans worldwide. It occurs more frequently than infections caused by Salmonella species, Shigella species, or Escherichia coli O157:H7. Although C. jejuni is also recognized for its association with serious post-infection neurological complications, most patients with C. jejuni infections have a self-limited illness. Nevertheless, a substantial proportion of these infections are treated with antibiotics. These include severe and prolonged cases of enteritis, infections in immune-suppressed patients, septicaemia and other extra-intestinal infections. Under these circumstances, erythromycin is often recommended as the drug of first choice. However, erythromycin-resistant Campylobacter have emerged during therapy with macrolides. Moreover, the widespread use of macrolides, including erythromycin, in veterinary medicine has accelerated this resistance trend. Several countries including Canada, Japan and Finland have reported C. jejuni isolates with low and stable rates of macrolide resistance. In contrast, the increasing level of macrolide resistance in C. jejuni is becoming a major public health concern in other parts of the world such as the United States, Europe and Taiwan. Macrolide resistance in Campylobacter is mainly associated with point mutation(s) occurring in the peptidyl-encoding region in domain V of the 23S rRNA gene, the target of macrolides. Several rapid and practical techniques have recently been developed for the identification of macrolide-resistant isolates of C. jejuni. The aim of this mini-review is to give an overview of the worldwide distribution of macrolide resistance in C. jejuni and Campylobacter coli as well as its possible association with the massive use of these agents in food animals. Mechanisms implicated in macrolide resistance in C. jejuni and also techniques that have been developed for the efficient detection of macrolide-associated mutation(s) will be discussed in detail.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jac/dkl210DOI Listing

Publication Analysis

Top Keywords

macrolide resistance
24
resistance jejuni
12
jejuni
9
resistance campylobacter
8
campylobacter jejuni
8
jejuni campylobacter
8
campylobacter coli
8
techniques developed
8
macrolide
6
campylobacter
6

Similar Publications

Unlabelled: The complex (MAC) is a common causative agent causing nontuberculous mycobacterial (NTM) pulmonary disease worldwide. Whole-genome sequencing was performed on a total of 203 retrospective MAC isolates from respiratory specimens. Phylogenomic analysis identified eight subspecies and species.

View Article and Find Full Text PDF

The Ivermectin Related Compound Moxidectin Can Target Apicomplexan Importin α and Limit Growth of Malarial Parasites.

Cells

January 2025

Nuclear Signaling Laboratory, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.

Signal-dependent transport into and out of the nucleus mediated by members of the importin (IMP) superfamily is crucial for eukaryotic function, with inhibitors targeting IMPα being of key interest as anti-infectious agents, including against the apicomplexan species and , causative agents of malaria and toxoplasmosis, respectively. We recently showed that the FDA-approved macrocyclic lactone ivermectin, as well as several other different small molecule inhibitors, can specifically bind to and inhibit and IMPα functions, as well as limit parasite growth. Here we focus on the FDA-approved antiparasitic moxidectin, a structural analogue of ivermectin, for its IMPα-targeting and anti-apicomplexan properties for the first time.

View Article and Find Full Text PDF

This study prospectively collected the clinical data, information on respiratory pathogens, and laboratory findings of children with Mycoplasma pneumoniae (M. pneumonia) infection who were hospitalized at the First Affiliated Hospital of Anhui Medical University during the M. pneumoniae outbreak in Hefei City, Anhui Province, China, between October 2023 and December 2023.

View Article and Find Full Text PDF

Exercise activates autophagy and lysosome system in skeletal muscle, which are known to play an important role in metabolic adaptation. However, the mechanism of exercise-activated autophagy and lysosome system in obese insulin resistance remains covert. In this study, we investigated the role of exercise-induced activation of autophagy and lysosome system in improving glucose metabolism of skeletal muscle.

View Article and Find Full Text PDF

Study of the Drug Resistance Function of Ivermectin-Resistance-Related miRNAs in Haemonchus contortus.

Acta Parasitol

January 2025

Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, College of Veterinary Medicine, Inner Mongolia Agricultural University, Inner Mongolia Hohhot, Hohhot, China.

Haemonchus contortus has caused significant economic losses in many regions. The emergence of drug resistance has created new difficulties for the prevention and control of parasitic diseases in cattle and sheep. The mechanism of drug resistance to ivermectin in H.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!