Objectives: The aim of the present study was to identify changes in the proteome of a laboratory-derived azole-resistant strain of Candida glabrata compared with its susceptible parent strain in an effort to identify proteins that are differentially expressed in association with azole resistance.

Methods: Soluble and membrane protein fractions were isolated from mutant strain F15 (fluconazole MIC>128 mg/L) and parent strain 66032 (fluconazole MIC=16 mg/L) grown to mid-log phase. Soluble proteins were resolved by both two-dimensional (2D) and one-dimensional (1D) polyacrylamide gel electrophoresis (GE) whereas membrane proteins were resolved by 1D GE. Spots or bands representing differentially expressed proteins were identified by matrix-assisted desorption ionization-time of flight mass spectroscopy (MALDI-TOF MS) and peptide mass fingerprinting.

Results: A total of 22 proteins were found to be more abundantly represented, and 3 proteins were found to be less abundantly represented, in strain F15 compared with strain 66032. These included up-regulation of the ATP-binding cassette transporter Cdr1p, the ergosterol biosynthesis enzyme Erg11p, proteins involved in glycolysis and glycerol metabolism, and proteins involved in the response to oxidative stress and cadmium exposure.

Conclusions: In addition to transcriptional regulation of Cdr1p, this study identified the differential expression of several proteins that may contribute to azole resistance and suggests the possibility for a post-transcriptional mechanism for increased expression of Erg11p.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jac/dkl221DOI Listing

Publication Analysis

Top Keywords

proteins
9
azole resistance
8
candida glabrata
8
parent strain
8
differentially expressed
8
strain f15
8
strain 66032
8
proteins resolved
8
proteins abundantly
8
abundantly represented
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!