[Expression of glutathione S-transferase zeta class genes in Saccharomyces cerevisiae].

Yi Chuan

Key Laboratory of Bioactive materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.

Published: May 2006

The zeta class of glutathione S-transferase (GSTZs), which is an important multifunctional enzyme, relates to the cell metabolism and contamination elimination. The GSTZ genes from Arabidopsis thaliana L. and Brassica napus L. cv. Shan 2B and Ken C1 were cloned into the multi-cloning site of the shuttle expression vector pYES2. After the recombinants were obtained, the recombinant plasmids were isolated and introduced into the defective mutant INCSc1 of Saccharomyces cerevisiae. Then the recombinant strains Y2At, Y2BnB and Y2BnC were obtained after cultured on SC-U selective plates. When induced in the medium containing galactose and maltose, the recombinant yeast expressed as active GSTZs showing the dichloroacetic acid dechlorinating activity, which existed in the yeast cell as a soluble state. The comparison of different carbon sources showed that sucrose and glucose significantly exhibited the expression of GSTZ gene; glycerol somewhat affected the growth of yeast but increased the specific activity of GSTZ by 17%; and galactose slightly affected the yeast growth with no affection to the activity of GSTZ. Zero to ninety-six hrs induction experiments showed that specific activity of GSTZ in recombinant yeast reached highest when induced for 36 hours. The specific activity of AtGSTZ, BnGSTZ-B and BnGSTZ-C was 5.3 U/mg, 4.3 U/mg and 0.3 U/mg, respectively. The values are lower than that expressed in the E. coli and wheat-sperm cell-free protein synthesis system. However, the relative activity of three sources was similar in E. coli and wheat cell free system. The Km value of GSTZ genes from different sources was 0.59 mmol/L and 0.79 mmol/L for AtGSTZ and BnGSTZ-B, respectively, suggesting the GSTZ enzyme from Abrabidopsis thaliana has higher affinity to DCA than that from Brassica napus.

Download full-text PDF

Source

Publication Analysis

Top Keywords

specific activity
12
activity gstz
12
glutathione s-transferase
8
zeta class
8
gstz genes
8
brassica napus
8
recombinant yeast
8
atgstz bngstz-b
8
u/mg u/mg
8
gstz
7

Similar Publications

E. Coli cytotoxic necrotizing factor-1 promotes colorectal carcinogenesis by causing oxidative stress, DNA damage and intestinal permeability alteration.

J Exp Clin Cancer Res

January 2025

Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy.

Background: Bacterial toxins are emerging as promising hallmarks of colorectal cancer (CRC) pathogenesis. In particular, Cytotoxic Necrotizing Factor 1 (CNF1) from E. coli deserves special consideration due to the significantly higher prevalence of this toxin gene in CRC patients with respect to healthy subjects, and to the numerous tumor-promoting effects that have been ascribed to the toxin in vitro.

View Article and Find Full Text PDF

Esophageal cancer (EC) is one of the most common highly malignant tumors of the digestive system, with a poor prognosis under current treatment regimens. Nucleolin (NCL) is overexpressed in many tumors, and drugs specifically targeting NCL may offer a promising strategy for treating esophageal cancer. Here, we designed and prepared a novel aptamer-conjugated drug targeting NCL by AS1411 aptamer-human serum albumin (HSA)-the apoprotein of lidamycin (LDP)-active enediyne chromophore (AE), in order to achieve targeted treatment of esophageal cancer.

View Article and Find Full Text PDF

Oxidative stress-associated proximal tubular cells (PTCs) damage is an important pathogenesis of hypertensive renal injury. We previously reported the protective effect of VEGFR3 in salt-sensitive hypertension. However, the specific mechanism underlying the role of VEGFR3 in kidney during the overactivation of the renin-angiotensin-aldosterone system remains unclear.

View Article and Find Full Text PDF

Background: Cancer remains a leading cause of death worldwide. Environmental factors, specifically endocrine-disrupting chemicals (EDCs), like phthalates, are increasingly being linked to cancer development. Phthalates, widely used in consumer products, can activate the aryl hydrocarbon receptor (AhR).

View Article and Find Full Text PDF

ZNF169 promotes thyroid cancer progression via upregulating FBXW10.

Cell Div

January 2025

Department of Nuclear Medicine, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South university/Hunan Cancer Hospital, No. 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, P.R. China.

Background: Zinc finger protein 169 (ZNF169) plays a key role in cancer development. However, the specific role of ZNF169 in the tumorigenesis of thyroid carcinoma (THCA) remains poorly understood.

Methods: The expression of ZNF169 was measured using immunohistochemistry, RT-qPCR, and western blot.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!