Purpose: To evaluate the application of high-resolution MRI methodology for characterizing the fluid velocity field and evaluate fluid shear field within a simplified in vitro model of a bone-implant interface.

Materials And Methods: The study used a specific micromotion canine bone implant that has been used for over a decade in the experimental evaluation of anatomical, biomaterial, mechanical and surgical factors influencing the quality of the implant interface. To allow its implementation in an MR coil, a nonmagnetic model of the micromotion implant was fabricated. The model consisted of a cylinder of polymethylmethacrylate (PMMA) representing the implant, located within an annular controlled gap into a block of coralline-derived bulk porous hydroxyapatite (HA; Interpore Cross International, Irvine, CA, USA). The assembly was potted in a polycarbonate shell and connected to a gravity-feed flow system consisting of a water fluid reservoir and peristaltic pump. Cross-sectional fluid velocity images through the principal axis of the implant were generated using a phase-encoding MR imaging technique; axial fluid flow was derived, and fluid shear was evaluated using a Newtonian fluid model.

Results: Due to the nonuniform gap of the actual experimental construct, a highly nonuniform flow through the annular gap and a secondary flow through the porous HA block were observed. Axial velocity magnitudes in the range 0.04 to 14 mm/s were measured, and the flow velocities within the annular gap and the surrounding bone differed by nearly two orders of magnitude. Image analysis showed that 95% of total flow passed through the annular gap and 5% was transported through the porous HA block. Fluid shear was computed within the porous structure and the annular gap, and they differed by one order of magnitude.

Conclusion: We demonstrated that high-resolution MR flow imaging has the resolution to measure fluid transport processes noninvasively through a nonmagnetic model bone implant. Gap fluid flow and fluid flow into the permeable skeleton (HA block) were quantified, and these data allowed the noninvasive determination of fluid shear. These promising results are encouraging for applications in biological tissue, artificial bone substitutes, tissue engineering and clinically relevant studies concerning implant fixation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mri.2005.11.001DOI Listing

Publication Analysis

Top Keywords

fluid shear
16
annular gap
16
fluid
12
fluid flow
12
flow
10
flow imaging
8
fluid velocity
8
bone implant
8
nonmagnetic model
8
porous block
8

Similar Publications

This study examines the behavior of the Casson nanofluid bioconvection flow around a spinning disc under various influences, including gyrotactic microorganisms, multiple slips, and thermal radiation. Notably, it accounts for the reversible nature of the flow and incorporates the esterification process. The aim of this study is to investigate the influence of reversible chemical reactions on the flow behavior of a Casson nanofluid in the presence of bioconvective microorganisms over a spinning disc.

View Article and Find Full Text PDF

Hydraulic fracturing, which forms complex fracture networks, is a common technique for efficiently exploiting low-permeability conglomerate reservoirs. However, the presence of gravel makes conglomerate highly heterogeneous, endowing the deformation, failure, and internal micro-scale fracture expansion mechanisms with uniqueness. The mechanism of fracture expansion when encountering gravel in conglomerate reservoirs remains unclear, challenging the design and effective implementation of hydraulic fracturing.

View Article and Find Full Text PDF

Background And Objective: In clinical practice, valve-sparing aortic root replacement surgery primarily addresses left ventricular dysfunction in patients due to severe aortic regurgitation, but there is controversy regarding the choice of surgical technique. In order to investigate which type of valve-sparing aortic root replacement surgeries can achieve better blood flow conditions, this study examines the impact of changes in the geometric morphology of the aortic root on the hemodynamic environment through numerical simulation.

Methods: An idealized model of the aortic root was established based on data obtained from clinical measurements, including using the model of the aortic root without significant lesions as the control group (Model C), while using surgical models of leaflet reimplantation with tubular graft (Model T), leaflet reimplantation with Valsalva graft (Model V), and the Florida sleeve procedure (Model F) as the experimental groups.

View Article and Find Full Text PDF

Capsules, which are potentially-active fluid droplets enclosed in a thin elastic membrane, experience large deformations when placed in suspension. The induced fluid-structure interaction stresses can potentially lead to rupture of the capsule membrane. While numerous experimental studies have focused on the rheological behavior of capsules until rupture, there remains a gap in understanding the evolution of their mechanical properties and the underlying mechanisms of damage and breakup under flow.

View Article and Find Full Text PDF

Quantitative investigation of a 3D bubble trapper in a high shear stress microfluidic chip using computational fluid dynamics and L*A*B* color space.

Biomed Microdevices

January 2025

Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Suwannabhumi Canal Rd, Bang Pla, Bang Phli District, Samut Prakan, 10540, Thailand.

Microfluidic chips often face challenges related to the formation and accumulation of air bubbles, which can hinder their performance. This study investigated a bubble trapping mechanism integrated into microfluidic chip to address this issue. Microfluidic chip design includes a high shear stress section of fluid flow that can generate up to 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!