A regulatory volume decrease response occurs when skate (Raja erinacea) erythrocytes are exposed to hyposmotic medium; they swell and then reduce their volume by releasing organic osmolytes (primarily taurine) and associated water. The response involves the red blood cell anion-exchanger skate anion-exchanger 1 (skAE1), which has been previously shown to be affected by tyrosine phosphorylation, to form tetramers and to change binding affinities to the cytoskeletal proteins, ankyrin and band 4.1. Our recent studies are focused on determining the sequence and mechanism of these events to better understand the activation of skAE1 upon hyposmotic stimulation. Under isosmotic conditions a large portion of skAE1 is found not only on the plasma membranes but also associated intracellularly in detergent-resistant membranes or lipid rafts. We hypothesize that an important step in the hyposmotic-induced increase in taurine transport involves the movement of skAE1 from an intracellular association with lipid rafts into the cell membrane. Inhibition of tyrosine phosphorylation of skAE1 with piceatannol reduces the hyposmotic-induced increase in taurine transport and also inhibits both the decreased binding of skAE1 to band 4.1 and the increased affinity to ankyrin. However, the phosphorylation inhibitor does not block the movement of the transporter into the plasma membrane or the formation of tetramers. This suggests that tyrosine phosphorylation is important in the hyposmotic-induced taurine transport but other steps that do not require phosphorylation play an important role.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1748-1716.2006.01556.x | DOI Listing |
Alzheimers Dement
December 2024
McGill University, Montreal, QC, Canada.
Background: Activation of the mTOR pathway is pivotal for microglia to induce and sustain neuroprotective functions (Ulland et al., 2017; Wang et al., 2022).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Iowa, Iowa City, IA, USA.
Background: The dorsal raphe nucleus (DRN) is the primary source of serotonergic projections to supratentorial structures. We and others have shown that it is selectively vulnerable to tau pathology in both human and mouse models of early AD. Although well characterized in mice, the neurochemical anatomy of the human DRN, and in particular the role of Vesicular glutamate transporter-3 (VGLUT3)-expressing neocortical projection neurons in tau pathology, remains unclear.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
Background: Alzheimer's disease (AD) is a neurodegenerative disease characterized by the presence of phosphorylated tau neurofibrillary tangles and extracellular deposits of amyloid beta plaques (Aβ) in the brain. Microglia cells have been proposed to be involved in amyloid plaque formation since activated microglia produce inflammatory cytokines that contribute to a hostile neuronal environment, exacerbating AD pathogenesis.
Method: We aim to evaluate if the pharmacological inhibition of the myeloid/microglial receptor tyrosine kinase AXL, with bemcentinib (BGB) could be used as a novel therapeutic approach for AD.
Alzheimers Dement
December 2024
The Medical University of South Carolina, Charleston, SC, USA.
Background: Alzheimer's disease (AD) pathology can start accumulating 20-30 years before cognitive symptoms occur, with increases in inflammation, amyloid-β (Aβ), and hyperphosphorylated Tau during this time. Previous studies have shown that the post-translational modification of a single N-acetylglucosamine moiety to serine or threonine residues to cytosolic or nuclear proteins, known as O-GlcNAcylation, can modify a plethora of cellular processes, including the processing of the amyloid precursor protein, competing with phosphorylation on tau, as well as having anti-inflammatory effects. This study is designed to evaluate how increasing O-GlcNAcylation is impacting AD pathology in the most comprehensive AD rat model to date, the TgF344-AD rat model.
View Article and Find Full Text PDFFront Chem Biol
August 2024
Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, United States.
Introduction: Dual specific phosphatases (DUSPs) are mitogen-activated protein kinase (MAPK) regulators, which also serve as drug targets for treating various vascular diseases. Previously, we have presented mechanistic characterizations of DUSP5 and its interaction with pERK, proposing a dual active site.
Methods: Herein, we characterize the interactions between the DUSP5 phosphatase domain and the pT-E-pY activation loop of ERK2, with specific active site assignments.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!