The villin headpiece subdomain (HP36) is the smallest naturally occurring protein that folds cooperatively. The protein folds on a microsecond time scale. Its small size and very rapid folding have made it a popular target for biophysical studies of protein folding. Temperature-dependent one-dimensional (1D) NMR studies of the full-length protein together with CD and 1D NMR studies of the 21-residue peptide fragment (HP21) derived from HP36 have shown that there is significant structure in the unfolded state of HP36 and have demonstrated that HP21 is a good model of these interactions. Here, we characterized the model peptide HP21 in detail by two-dimensional NMR. Strongly upfield shifted C(alpha) protons, the magnitude of the 3J(NH,alpha) coupling constants, and the pattern of backbone-backbone and backbone-side chain NOEs indicate that the ensemble of structures populated by HP21 contains alpha-helical structure and native as well as non-native hydrophobic contacts. The hydrogen-bonded secondary structure inferred from the NOEs is, however, not sufficient to confer significant protection against amide H-D exchange. These studies indicate that there is significant secondary structure and hydrophobic clustering in the unfolded state of HP36. The implications for the folding of HP36 are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi052484n | DOI Listing |
J Chem Theory Comput
December 2024
School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Rue Michel Servet 1, 1206 Genève, Switzerland.
We introduce an enhanced sampling algorithm to obtain converged free energy landscapes of molecular rare events, even when the collective variable (CV) used for biasing is not optimal. Our approach samples a time-dependent target distribution by combining the on-the-fly probability enhanced sampling and its exploratory variant, OPES Explore. This promotes more transitions between the relevant metastable states and accelerates the convergence speed of the free energy estimate.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.
Birds use their claws to perch on branches, which helps them to recover energy and observe their surroundings; however, most biomimetic flapping-wing aircraft can only fly, not perch. This study was conducted on the basis of bionic principles to replicate birds' claw and wing movements in order to design a highly biomimetic flapping-wing aircraft capable of perching. First, a posture conversion module with a multi-motor hemispherical gear structure allows the aircraft to flap, twist, swing, and transition between its folded and unfolded states.
View Article and Find Full Text PDFUnlabelled: "Single Model initial-condition Large Ensembles" (SMILEs) conducted with Earth system models have transformed our ability to quantify internal climate variability and forced climate change at local and regional scales. An important consideration in their experimental design is the choice of initialization procedure as this influences the duration of initial-condition memory, with implications for interpreting the temporal evolution of both the ensemble-mean and ensemble-spread. Here we leverage the strategic design of the 100-member Community Earth System Model version 2 (CESM2) SMILE to investigate the dependence of ensemble spread on the method of initialization (micro- vs.
View Article and Find Full Text PDFPlant Cell Environ
December 2024
State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
The endoplasmic reticulum (ER) serves as the primary site for protein biosynthesis and processing, with ER homeostasis being essential for the survival of plant cells. Numerous studies have underscored the pivotal role of the ER as a battleground for host-pathogen interactions. Pathogens secrete effectors to subvert the host ER and manipulate ER-mediated defense responses, fostering an infection-permissive environment for their proliferation.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires and Institute of Chemistry and Biological Physical Chemistry (IQUIFIB, UBA-CONICET), Junin 956, 1113, Buenos Aires, Argentina. Electronic address:
Here we explore the interplay between physical and chemical perturbants to unravel links among native folding, amorphous and ordered aggregation scenarios in IFABP (rat intestinal fatty acid binding protein). This small beta-barrel protein undergoes amyloid-like aggregation above 15 % v/v trifluoroethanol. Our aim was to address the influence of sub-aggregating TFE concentrations on the unfolding transitions of IFABP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!