Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: Unloading can prevent bone formation by osteoblasts. To study this mechanism, we focused on a ubiquitin ligase, Cbl-b, which was highly expressed in osteoblastic cells during denervation. Our results suggest that Cbl-b may mediate denervation-induced osteopenia by inhibiting IGF-I signaling in osteoblasts.
Introduction: Unloading, such as denervation (sciatic neurectomy) and spaceflight, suppresses bone formation by osteoblasts, leading to osteopenia. The resistance of osteoblasts to growth factors contributes to such unloading-mediated osteopenia. However, a detailed mechanism of this resistance is unknown. We first found that a RING-type ubiquitin ligase, Cbl-b, was highly expressed in osteoblastic cells after sciatic neurectomy in mice. In this study, we reasoned that Cbl-b played an important role in the resistance of osteoblasts to IGF-I.
Materials And Methods: Cbl-b-deficient (Cbl-b(-/-)) or wildtype (Cbl-b(+/+)) mice were subjected to sciatic neurectomy. Bone formation in these mice was assessed by calcein labeling and histomorphometric analyses. We examined IGF-I signaling molecules in femora of these mice by Western blot and immunohistochemical analyses. We also examined the mitogenic response of Cbl-b-overexpressing or -deficient osteoblastic cells to various growth factors.
Results: In Cbl-b(+/+) mice, denervation decreased femur mass and bone formation, whereas it increased the expression of Cbl-b protein in osteoprogenitor cells and in osteocalcin-positive cells (osteoblastic cells) in hindlimb bone. In contrast, in Cbl-b(-/-) mice, bone mass and bone formation were sustained during denervation. Denervation inhibited the mitogenic response of osteoprogenitor cells most significantly to IGF-I. Therefore, we focused on Cbl-b-mediated modification of IGF-I signaling. Denervation decreased the amounts of insulin receptor substrate-1 (IRS-1), phosphatidly inositol 3-phosphate kinase (PI3K), and Akt-1 proteins in femora of Cbl-b(+/+) mice, whereas the amounts of these IGF-I signaling molecules in femora of Cbl-b(-/-) mice were constant after denervation. On a cellular level, primary osteoblastic cells from Cbl-b(-/-) mice were more stimulated to proliferate by IGF-I treatment compared with those from Cbl-b(+/+) mice. Furthermore, overexpression of Cbl-b increased ubiquitination and degradation of IRS-1 in primary Cbl-b(-/-) osteoblastic cells, leading to their impaired mitogenic response to IGF-I.
Conclusions: These results suggest that Cbl-b induces resistance of osteoblasts to IGF-I during denervation by increasing IRS-1 degradation and that Cbl-b-mediated modification of IGF-I signaling may contribute to decreased bone formation during denervation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1359/jbmr.060207 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!