Human homologue of SETA binding protein 1 interacts with cathepsin B and participates in TNF-Induced apoptosis in ovarian cancer cells.

Mol Cell Biochem

State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China.

Published: November 2006

Lysosomal cysteine protease cathepsin B has been reported to play an important role in apoptosis of many different cancer cells, but the regulation of cathepsin B in apoptosis is poorly understood. Human homologue of SETA binding protein 1 (hSB1) was identified to interact with cathepsin B by yeast-two hybrid method, and the interaction was confirmed in vitro GST pull-down assay and in vivo coimmunoprecipitation experiment. hSB1 was co-localized with cathepsin B in cellular lysosomes. Our previous study has shown that TNF can induce ovarian cancer cells OV-90 apoptosis and the apoptosis process is cathepsin B-depended. Here we provide evidence that overexpression of cathepsin B-interacting protein hSB1 could suppress TNF-triggered apoptosis in OV-90 cells, but has no effect on cellular cathepsin B activity. hSB1 may function as a regulator of cathepsin B-mediated apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-006-9214-7DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
cathepsin
9
human homologue
8
homologue seta
8
seta binding
8
binding protein
8
ovarian cancer
8
protein hsb1
8
apoptosis
7
protein interacts
4

Similar Publications

Hydrogen sulfide (HS)-mediated protein S-sulfhydration has been shown to play critical roles in several diseases. Tumor-associated macrophages (TAMs) are the predominant population of immune cells present within solid tumor tissues, and they function to restrict antitumor immunity. However, no previous study has investigated the role of protein S-sulfhydration in TAM reprogramming in breast cancer (BC).

View Article and Find Full Text PDF

Berberine (BBR) has been proved to inhibit the malignant progression of non-small cell lung cancer (NSCLC), but the underlying molecular mechanism still needs to be further revealed. NSCLC cells (A549 and H1299) were treated with BBR. CCK8 assay, colony formation assay, flow cytometry, TUNEL staining and transwell assay were used to examine cell proliferation, apoptosis and invasion.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) significantly influence tumor progression and therapeutic resistance in colorectal cancer (CRC). However, the distributions and functions of CAF subpopulations vary across the four consensus molecular subtypes (CMSs) of CRC. This study performed single-cell RNA and bulk RNA sequencing and revealed that myofibroblast-like CAFs (myCAFs), tumor-like CAFs (tCAFs), inflammatory CAFs (iCAFs), CXCL14CAFs, and MTCAFs are notably enriched in CMS4 compared with other CMSs of CRC.

View Article and Find Full Text PDF

Hereditary diffuse gastric cancer is characterized by an increased risk of diffuse gastric cancer and lobular breast cancer, and is caused by pathogenic germline variants of E-cadherin and -E-catenin, which are key regulators of cell-cell adhesion. However, how the loss of cell-cell adhesion promotes cell dissemination remains to be fully understood. Therefore, a three-dimensional computer model was developed to describe the initial steps of diffuse gastric cancer development.

View Article and Find Full Text PDF

Purpose: This study aims to elucidate the role of pituitary adenylate cyclase-activating polypeptide (PACAP) in Hunner-type Interstitial Cystitis (HIC) and evaluate its potential as a therapeutic target.

Methods: Bladder tissue samples were obtained from HIC patients and normal bladder tissue from bladder cancer patients. PACAP expression was assessed through immunohistochemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!