Intestinal absorption of strontium (Sr) in thirteen healthy adult German volunteers has been investigated by simultaneous oral and intravenous administration of two stable tracer isotopes, i.e. (84)Sr and (86)Sr. The measured Sr tracer concentration in plasma was analyzed using the convolution integral technique to obtain the intestinal absorption rate. The results showed that the Sr labeled in different foodstuffs was absorbed into the body fluids in a large range of difference. The maximum Sr absorption rates were observed within 60-120 min after administration. The rate of absorption is used to evaluate the intestinal absorption fraction, i.e. the f (1) value for various foodstuffs. The equivalent and effective dose coefficients for ingestion of (90)Sr were calculated using these f (1) values, and they were compared with those recommended by the International Commission on Radiological Protection (ICRP). The geometric and arithmetic means of the f (1) values are 0.38 and 0.45 associated with a geometric standard deviation and a standard deviation of 1.88 and 0.22, respectively. The 90% confidence interval of the f (1) values obtained in the present study ranges from 0.13 to 0.98. Expressed as the ratio of the 95 and 50% percentiles of the estimated probability, the uncertainty for the f (1) value corresponds to a factor of 2.58. The effective dose coefficients of (90)Sr after ingestion are 6.1 x 10(-9) Sv Bq(-1) for an f(1) value of 0.05, 1.0 x 10(-8) Sv Bq(-1) for 0.1, 1.9 x 10(-8) Sv Bq(-1) for 0.2, 2.8 x 10(-8) Sv Bq(-1) for 0.3, 3.6 x 10(-8) Sv Bq(-1) for 0.4, 5.3 x 10(-8) Sv Bq(-1) for 0.6, 7.1 x 10(-8) Sv Bq(-1) for 0.8, and 7.9 x 10(-8) Sv Bq(-1) for 0.9, respectively. Taking the effective dose coefficient of 2.8 x 10(-8) Sv Bq(-1) for an f (1) value of 0.3, which is recommended by the ICRP, as a reference, the effective dose coefficient of (90)Sr after ingestion varies by a factor of 2.8 when the f (1) value changes by a factor of 3, i.e. it decreases from 0.3 to 0.1 or increases from 0.3 to 0.9, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00411-006-0050-7DOI Listing

Publication Analysis

Top Keywords

10-8 bq-1
32
bq-1 10-8
24
intestinal absorption
16
effective dose
16
dose coefficient
12
90sr ingestion
12
bq-1
9
absorption rate
8
coefficient 90sr
8
dose coefficients
8

Similar Publications

Current practice in reference internal dosimetry assumes a fixed upright standing posture is maintained throughout the dose-integration period. Recently, the mesh-type ICRP adult reference computational phantoms were transformed into different body postures (e.g.

View Article and Find Full Text PDF

Validation of the TOPAS Monte Carlo toolkit for HDR brachytherapy simulations.

Brachytherapy

October 2021

Département de Radio-Oncologie et Axe oncologie du Centre de recherche du CHU de Québec, CHU de Québec, Québec, QC, Canada; Département de Physique, de Génie Physique et d'Optique et Centre de Recherche sur le Cancer, Université Laval, Québec, QC, Canada. Electronic address:

Purpose: The goal of this work is to validate the user-friendly Geant4-based Monte Carlo toolkit TOol for PArticle Simulation (TOPAS) for brachytherapy applications.

Methods And Materials: Brachytherapy simulations performed with TOPAS were systematically compared with published TG-186 reference data. The photon emission energy spectrum, the air-kerma strength, and the dose-rate constant of the model-based dose calculation algorithm (MBDCA)-WG generic Ir-192 source were extracted.

View Article and Find Full Text PDF

During prostate cancer treatment with 223Ra. 219Rn (actinon) occurs and may be exhaled by the patient. Nurses and other hospital employees may inhale this radionuclide and its decay products.

View Article and Find Full Text PDF

A compartmental model of uranium in human hair for protracted ingestion of natural uranium in drinking water.

Health Phys

June 2009

Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Radiation Protection, Neuherberg D-85764, Germany.

To predict uranium in human hair due to chronic exposure through drinking water, a compartment representing human hair was added into the uranium biokinetic model developed by the International Commission on Radiological Protection (ICRP). The hair compartmental model was used to predict uranium excretion in human hair as a bioassay indicator due to elevated uranium intakes. Two excretion pathways, one starting from the compartment of plasma and the other from the compartment of intermediate turnover soft tissue, are assumed to transfer uranium to the compartment of hair.

View Article and Find Full Text PDF

Radiation dose assessment of exposure to depleted uranium.

J Expo Sci Environ Epidemiol

July 2009

Institute of Radiation Protection, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.

Depleted uranium (DU) is claimed to contribute to human health problems, known as the Gulf War Syndrome and the Balkan Syndrome. Quantitative radiation dose is required to estimate the health risk of DU materials. The influences of the solubility parameters in the human alimentary tract and the respiratory tract systems and the aerosol particles size on the radiation dose of DU materials were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!