A nanodiamond with a mean particle size of 4 nm, which was prepared by the detonation of a nanodiamond, has been characterized and used as a collector for tungstate in water samples. An aqueous solution of nanodiamond was found to be stable over the pH range from 3 to 10. Coagulation of the nanodiamond could be brought about by adding an electrolyte solution. The adsorption characteristics of nanodiamond have been elucidated to be attributable to amino groups on its surface by the elemental-analysis data and the zeta potential measured in weak acid media. The unique adsorption properties of the nanodiamond for oxoacid anions were applied to a selective preconcentration method for tungstate in water samples. An appropriate amount of nanodiamond was added to a sample solution at pH 5 and a calcium chloride solution was added to aggregate nanodiamond. The sample solution was then allowed to stand for 2 h and centrifuged. The nanodiamond was transferred onto a membrane filter, washed with a diluted calcium chloride solution and treated in advance of an ICP-AES measurement by either of the following procedures: (a) redispersion of the nanodiamond into dilute nitric acid with an ultrasonic washer and (b) ashing of the membrane filter and the coagulated nanodiamond at 700 degrees C, followed by a treatment of the ash with hydrochloric and tartaric acids. The average recovery of tungstate from 100-ml artificial river-water was found to be 99% at the 0.25 ppm level with an RSD of 2.2% (n = 3). The concentration factor at present is 10.

Download full-text PDF

Source
http://dx.doi.org/10.2116/analsci.22.357DOI Listing

Publication Analysis

Top Keywords

nanodiamond
12
tungstate water
12
water samples
12
adsorption characteristics
8
characteristics nanodiamond
8
nanodiamond oxoacid
8
oxoacid anions
8
selective preconcentration
8
nanodiamond sample
8
sample solution
8

Similar Publications

Deciphering Surface-Localized Structure of Nanodiamonds.

Nanomaterials (Basel)

December 2024

Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China.

Nanomaterials, heralded as the "new materials of the 21st century" for their remarkable physical and chemical properties and broad application potential, have attracted substantial attention in recent years. Among these materials, which challenge traditional physical boundaries, nanodiamonds (NDs) are widely applied across diverse industries due to their exceptional surface multifunctionality and chemical stability. Nevertheless, atomic-level manipulation of NDs presents considerable challenges, which require detailed structural analysis to thoroughly elucidate their properties.

View Article and Find Full Text PDF

Background noise interferes with the accurate detection of early tumor biomarkers. This study introduces a method that effectively reduces background noise to enhance detection accuracy by combining a color-coded signaling approach with the unique fluorescent properties and room-temperature tunable quantum spin characteristics of fluorescent diamonds (FNDs) with nitrogen-vacancy centers. In this approach, a red signal indicates the presence of the target analyte within the spectral region, a green signal indicates its absence, and a yellow signal indicates the need for further analysis using FNDs' quantum spin properties for optical detection magnetic resonance (ODMR) to distinguish the FND signal from background noise.

View Article and Find Full Text PDF

Sensitive and accurate miRNA detection is important in cancer diagnosis but remains challenging owing to the essential features of miRNAs, such as their small size, high homology, and low abundance. This work proposes a novel electrochemical (EC)-enhanced quantum sensor achieving quantitative detection of miRNA-155 with simultaneous EC sensing. Specifically, fluorescent nanodiamonds/MXene nanocomposites were synthesized and modified with dual-mode signal labels, enabling miRNA-155 concentration measurement via relaxation time of nitrogen-vacancy (NV) centers and EC signals.

View Article and Find Full Text PDF

Bright Quantum-Grade Fluorescent Nanodiamonds.

ACS Nano

December 2024

Department of Chemistry, Graduate School of Life, Environmental, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.

Optically accessible spin-active nanomaterials are promising as quantum nanosensors for probing biological samples. However, achieving bioimaging-level brightness and high-quality spin properties for these materials is challenging and hinders their application in quantum biosensing. Here, we demonstrate bright fluorescent nanodiamonds (NDs) containing 0.

View Article and Find Full Text PDF

The existing synthetic protocols for the direct functionalization of carbon-based nanomaterials often entail limitations due to their harsh reaction conditions, which require the use of high temperatures for extended periods. This study aims to overcome these limitations by developing mild and efficient synthetic protocols around 1,3-dipolar cycloaddition. Beginning with the well-established azomethine ylide derivatization, we progress to the utilization of nitrile oxide, and of nitrone derivatives for the functionalization of reduced graphene oxide (rGO) as well as of nanodiamonds (NDs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!