Selective inhibitors of cyclooxygenase-2 (COX2) have attracted widespread media attention because of evidence of an elevated risk of cardiovascular complications in placebo-controlled trials, resulting in the market withdrawal of some members of this class. These drugs block the cyclooxygenase activity of prostaglandin H synthase-2 (PGHS2), but do not affect the associated peroxidase function. They were developed with the rationale of conserving the anti-inflammatory and analgesic actions of traditional nonsteroidal anti-inflammatory drugs (tNSAIDs) while sparing the ability of PGHS1-derived prostaglandins to afford gastric cytoprotection. PGHS1 and PGHS2 coexist in the vasculature and in macrophages, and are upregulated together in inflammatory tissues such as rheumatoid synovia and atherosclerotic plaque. They are each believed to function as homodimers. Here, we developed a new genetic mouse model of selective COX2 inhibition using a gene-targeted point mutation, resulting in a Y385F substitution. Structural modeling and biochemical assays showed the ability of PGHS1 and PGHS2 to heterodimerize and form prostaglandins. The heterodimerization of PGHS1-PGHS2 may explain how the ductus arteriosus closes normally at birth in mice expressing PGHS2 Y385F, but not in PGHS2-null mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nm1412 | DOI Listing |
JAMA Netw Open
January 2025
Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
Importance: People with kidney failure have a high risk of death and poor quality of life. Mortality risk prediction models may help them decide which form of treatment they prefer.
Objective: To systematically review the quality of existing mortality prediction models for people with kidney failure and assess whether they can be applied in clinical practice.
Jpn J Radiol
January 2025
Artificial Intelligence and Translational Imaging (ATI) Lab, Department of Radiology, School of Medicine, University of Crete, Voutes Campus, Heraklion, Greece.
Objective: Calcific tendinopathy, predominantly affecting rotator cuff tendons, leads to significant pain and tendon degeneration. Although US-guided percutaneous irrigation (US-PICT) is an effective treatment for this condition, prediction of patient' s response and long-term outcomes remains a challenge. This study introduces a novel radiomics-based model to forecast patient outcomes, addressing a gap in the current predictive methodologies.
View Article and Find Full Text PDFLifetime Data Anal
January 2025
Institut Camille Jordan, UMR 5208, Université Claude Bernard Lyon 1, Bat. Braconnier, 43, blvd du 11 novembre 1918, F - 69622, Villeurbanne Cedex, France.
Based on the expectile loss function and the adaptive LASSO penalty, the paper proposes and studies the estimation methods for the accelerated failure time (AFT) model. In this approach, we need to estimate the survival function of the censoring variable by the Kaplan-Meier estimator. The AFT model parameters are first estimated by the expectile method and afterwards, when the number of explanatory variables can be large, by the adaptive LASSO expectile method which directly carries out the automatic selection of variables.
View Article and Find Full Text PDFAnn Surg Oncol
January 2025
Breast Surgery Section, Division of GI and Oncologic Surgery, Massachusetts General Hospital, Boston, MA, USA.
Background: Nipple-sparing mastectomy (NSM) is infrequently performed in older women, at least in part owing to concerns regarding age-related complications. We describe postoperative outcomes of NSM in older women and risk factors for complications, with the goal of informing patient selection and decision-making.
Patients And Methods: Cases of NSM with immediate implant-based reconstruction were identified from an institutional database (2009-2019).
J Med Syst
January 2025
Department of Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands.
This study aimed to develop and validate a cost-effective, customizable patient-specific phantom for simulating external ventricular drain placement, combining image segmentation, 3-D printing and molding techniques. Two variations of the phantom were created based on patient MRI data, integrating a realistic skin layer with anatomical landmarks, a 3-D printed skull, an agarose polysaccharide gel brain, and a ventricular cavity. To validate the phantom, 15 neurosurgeons, residents, and physician assistants performed 30 EVD placements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!