Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Heterozygous missense mutations in the pore-forming subunit Kir6.2 of ATP-sensitive K(+) channels (K(ATP) channels) have recently been shown to cause permanent neonatal diabetes mellitus (PNDM). Functional studies demonstrated that PNDM mutations reduce K(ATP) channel sensitivity to ATP inhibition, resulting in gain of channel function. However, the impact of these mutations on channel expression has not been examined. Here, we show that PNDM mutations, including Q52R, V59G, V59M, R201C, R201H, and I296L, not only reduce channel ATP sensitivity but also impair channel expression at the cell surface to varying degrees. By tagging the PNDM Kir6.2 mutant V59G or R201H with an additional mutation, N160D, that confers voltage-dependent polyamine block of K(ATP) channels, we demonstrate that in simulated heterozygous state, all surface channels are either wild-type or heteromeric channels containing both wild-type and mutant Kir6.2 subunits. Comparison of the various PNDM mutations in their effects on channel nucleotide sensitivity and expression, as well as disease phenotype, suggests that both channel-gating defect and expression level may play a role in determining disease severity. Interestingly, sulfonylureas significantly increase surface expression of certain PNDM mutants, suggesting that the efficacy of sulfonylurea therapy may be compromised by the effect of these drugs on channel expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2337/db05-1571 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!