A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Early and rapid development of insulin resistance, islet dysfunction and glucose intolerance after high-fat feeding in mice overexpressing phosphodiesterase 3B. | LitMetric

Inadequate islet adaptation to insulin resistance leads to glucose intolerance and type 2 diabetes. Here we investigate whether beta-cell cAMP is crucial for islet adaptation and prevention of glucose intolerance in mice. Mice with a beta-cell-specific, 2-fold overexpression of the cAMP-degrading enzyme phosphodiesterase 3B (RIP-PDE3B/2 mice) were metabolically challenged with a high-fat diet. We found that RIP-PDE3B/2 mice early and rapidly develop glucose intolerance and insulin resistance, as compared with wild-type littermates, after 2 months of high-fat feeding. This was evident from advanced fasting hyperinsulinemia and early development of hyper-glycemia, in spite of hyperinsulinemia, as well as impaired capacity of insulin to suppress plasma glucose in an insulin tolerance test. In vitro analyses of insulin-stimulated lipogenesis in adipocytes and glucose uptake in skeletal muscle did not reveal reduced insulin sensitivity in these tissues. Significant steatosis was noted in livers from high-fat-fed wild-type and RIP-PDE3B/2 mice and liver triacyl-glycerol content was 3-fold higher than in wild-type mice fed a control diet. Histochemical analysis revealed severe islet perturbations, such as centrally located alpha-cells and reduced immunostaining for insulin and GLUT2 in islets from RIP-PDE3B/2 mice. Additionally, in vitro experiments revealed that the insulin secretory response to glucagon-like peptide-1 stimulation was markedly reduced in islets from high-fat-fed RIP-PDE3B/2 mice. We conclude that accurate regulation of beta-cell cAMP is necessary for adequate islet adaptation to a perturbed metabolic environment and protective for the development of glucose intolerance and insulin resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1677/joe.1.06522DOI Listing

Publication Analysis

Top Keywords

glucose intolerance
20
rip-pde3b/2 mice
20
insulin resistance
16
islet adaptation
12
insulin
9
mice
9
high-fat feeding
8
beta-cell camp
8
intolerance insulin
8
glucose
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!