Although >66% of melanomas harbor activating mutations in BRAF and exhibit constitutive activity in the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase signaling pathway, it is unclear how effective MEK inhibition will be as a sole therapeutic strategy for melanoma. We investigated the anticancer activity of MEK inhibition in a panel of cell lines derived from radial growth phase (WM35) and vertical growth phase (WM793) of primary melanomas and metastatic melanomas (1205Lu, 451Lu, WM164, and C8161) in a three-dimensional spheroid model and found that the metastatic lines were completely resistant to MEK inhibition (U0126 and PD98059) but the earlier stage cell lines were not. Similarly, these same metastatic melanoma lines were also resistant to inhibitors of the phosphatidylinositol 3-kinase/Akt pathway (LY294002 and wortmannin). Under adherent culture conditions, the MEK inhibitors blocked growth through the induction of cell cycle arrest and up-regulation of p27, but this was readily reversible following inhibitor washout. However, when the phosphatidylinositol 3-kinase and MEK inhibitors were combined, the growth and invasion of the metastatic melanoma three-dimensional spheroids were blocked. Taken together, these results suggest that the most aggressive melanomas are resistant to strategies targeting one signaling pathway and that multiple signaling pathways may need to be targeted for maximal therapeutic efficacy. It is further suggested that BRAF mutational status is not predictive of response to MEK inhibition under three-dimensional culture conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-06-0084DOI Listing

Publication Analysis

Top Keywords

mek inhibition
16
cell lines
12
multiple signaling
8
signaling pathways
8
pathways targeted
8
lines derived
8
signal-regulated kinase
8
signaling pathway
8
growth phase
8
metastatic melanoma
8

Similar Publications

: Although BRAF inhibitors, such as vemurafenib, produce a marked response in patients with advanced melanoma with a BRAF V600 mutation, they eventually develop resistance to this treatment. To address this issue, vemurafenib is increasingly combined with the MEK inhibitor cobimetinib, leading to improved response rates and enhanced survival. However, this treatment modality is associated with numerous side effects.

View Article and Find Full Text PDF

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

Introduction: Molecular alterations in the PI3K/AKT and Ras/Raf/MEK/ERK pathways are frequently observed in patients with endometrial cancers. However, mTOR inhibitors, such as temsirolimus, have modest clinical benefits. In addition to inducing metabolic changes in cells, metformin activates AMPK, which in turn inhibits the mTOR pathway.

View Article and Find Full Text PDF

A series of target 4-substituted-5-(2-(pyridine-2-ylamino)ethyl)-2,4-dihydro-3-1,2,4-triazole-3-thiones and their chloro analogs - were synthesized in a reaction of the selected aldehydes with the corresponding 4-amino-1,2,4-triazole-3-thiones and , which were obtained from 3-(pyridin-2-ylamino)propanoic acid () or 3-((5-chloropyridin-2-yl)amino)propanoic acid (), respectively, with thioacetohydrazide. The antibacterial and antifungal activities of the synthesized hydrazones were screened against the bacteria , , and and the fungi and by agar diffusion and serial dilution methods. 4-Amino-5-(2-((5-chloropyridin-2-yl)amino)ethyl)-2,4-dihydro-3-1,2,4-triazole-3-thione () and 4-(benzylideneamino)-5-(2-(pyridin-2-ylamino)ethyl)-2,4-dihydro-3-1,2,4-triazole-3-thione () were identified as exceptionally active (MIC 0.

View Article and Find Full Text PDF

The Rac1 P29S hotspot mutation in cutaneous melanoma is associated with resistance to MAPK pathway inhibitors (MAPKi) and worse clinical outcomes. Moreover, activation of Rac1 guanine exchange factors (GEFs) also promotes MAPKi-resistance, particularly in undifferentiated melanoma cells. Here we delineate mechanisms of Rac1-driven MAPKi-resistance and identify strategies to inhibit the growth of this class of cutaneous melanomas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!