Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Considerable attention has focused on the role of protein kinase C (PKC) in triggering the profound infarct-sparing effect of ischemic preconditioning (PC). In contrast, the involvement of inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)], the second messenger generated in parallel with the diacylglycerol-PKC pathway, remains poorly understood. We hypothesized that, if Ins(1,4,5)P(3) signaling [i.e., release of Ins(1,4,5)P(3) and subsequent binding to Ins(1,4,5)P(3) receptors] contributes to PC-induced cardioprotection, then the reduction of infarct size achieved with PC would be attenuated in mice that are deficient in Ins(1,4,5)P(3) receptor protein. To test this concept, hearts were harvested from 1) B6C3Fe-a/a-Itpr-1(opt+/-)/J mutants displaying reduced expression of Ins(1,4,5)P(3) receptor-1 protein, 2) Itpr-1(opt+/+) wild types from the colony, and 3) C57BL/6J mice. All hearts were buffer-perfused and randomized to receive two 5-min episodes of PC ischemia, pretreatment with d-myo-Ins(1,4,5)P(3) [sodium salt of native Ins(1,4,5)P(3)], the mitochondrial ATP-sensitive K(+) channel opener diazoxide, or no intervention (controls). After the treatment phase, all hearts underwent 30-min global ischemia followed by 2 h of reperfusion, and infarct size was delineated by tetrazolium staining. In both wild-type and C57BL/6J cohorts, area of necrosis in hearts that received PC, d-myo-Ins(1,4,5)P(3), and diazoxide averaged 28-35% of the total left ventricle (LV), significantly smaller than the values of 52-53% seen in controls (P < 0.05). In contrast, in Itpr-1(opt+/-) mutants, protection was only seen with diazoxide: neither PC nor d-myo-Ins(1,4,5)P(3) limited infarct size (52-58% vs. 56% of the LV in mutant controls). These data provide novel evidence that Ins(1,4,5)P(3) signaling contributes to infarct size reduction with PC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.00313.2006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!