Mast cells express the high affinity IgE receptor FcepsilonRI, which upon aggregation by multivalent antigens elicits signals that cause rapid changes within the mast cell and in the surrounding tissue. We previously showed that FcepsilonRI aggregation caused a rapid increase in phosphorylation of both Fer and Fps/Fes kinases in bone marrow-derived mast cells. In this study, we report that FcepsilonRI aggregation leads to increased Fer/Fps kinase activities and that Fer phosphorylation downstream of FcepsilonRI is independent of Syk, Fyn, and Gab2 but requires Lyn. Activated Fer/Fps readily phosphorylate the C terminus of platelet-endothelial cell adhesion molecule 1 (Pecam-1) on immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and a non-ITIM residue (Tyr(700)) in vitro and in transfected cells. Mast cells devoid of Fer/Fps kinase activities display a reduction in FcepsilonRI aggregation-induced tyrosine phosphorylation of Pecam-1, with no defects in recruitment of Shp1/Shp2 phosphatases observed. Lyn-deficient mast cells display a dramatic reduction in Pecam-1 phosphorylation at Tyr(685) and a complete loss of Shp2 recruitment, suggesting a role as an initiator kinase for Pecam-1. Consistent with previous studies of Pecam-1-deficient mast cells, we observe an exaggerated degranulation response in mast cells lacking Fer/Fps kinases at low antigen dosages. Thus, Lyn and Fer/Fps kinases cooperate to phosphorylate Pecam-1 and activate Shp1/Shp2 phosphatases that function in part to limit mast cell activation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M604252200DOI Listing

Publication Analysis

Top Keywords

mast cells
24
mast cell
12
fcepsilonri aggregation
12
mast
9
fer fps/fes
8
platelet-endothelial cell
8
cell adhesion
8
adhesion molecule
8
limit mast
8
cell activation
8

Similar Publications

Background: IgE-mediated food allergy is accompanied by mucosal mast cell (MMC) hyperplasia in the intestinal mucosa. Intestinal MMC numbers correlate with the severity of food allergy symptoms. However, the mechanisms by which MMCs proliferate excessively are poorly understood.

View Article and Find Full Text PDF

Two-pore channel regulators - Who is in control?

Front Physiol

January 2025

Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany.

Two-pore channels (TPCs) are adenine nucleotide and phosphoinositide regulated cation channels. NAADP activates and ATP blocks TPCs, while the endolysosomal phosphoinositide PI(3,5)P activates TPCs. TPCs are ubiquitously expressed including expression in the innate as well as the adaptive immune system.

View Article and Find Full Text PDF

Background: Myasthenia gravis (MG) and idiopathic inflammatory myopathies (IIM) are autoimmune disorders that can co-occur, complicating diagnosis and treatment. The molecular mechanisms underlying this comorbidity are not well understood.

Objective: This study aims to identify common differentially expressed genes (co-DEGs) between MG and IIM to elucidate shared pathogenic pathways and potential therapeutic targets.

View Article and Find Full Text PDF

Leaves Extracts Inhibit the Development of Ascitic and Solid Ehrlich Tumors.

Pharmaceuticals (Basel)

December 2024

Post Graduate Program in Structural and Functional Biology, Paulista School of Medicine (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil.

is traditionally known for its medicinal properties. Objectives: Here, we investigated the effects of crude extract (CE) and ethyl acetate fraction (EAF) obtained from leaves on the ascitic (EA) and solid (ES) forms of Ehrlich tumors. : Induced and uninduced BALB/c mice were treated intramuscularly, for 7 or 14 days, with saline solution or CE and EAF, both at a 10% concentration, based on in vitro cytotoxicity assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!