Effects of methotrexate on calcium flux in rat liver mitochondria, microsomes and plasma membrane vesicles.

Comp Biochem Physiol C Toxicol Pharmacol

Laboratory of Biological Oxidations, Department of Biochemistry, University of Maringá, 87020900 Maringá, Brazil.

Published: July 2006

The metabolic effects of methotrexate in perfused livers are similar to those exerted by hormones acting through Ca(2+)-dependent mechanisms. The aim of the present study was to determine whether the effects of methotrexate are mediated by a direct action on cellular Ca(2+) fluxes. Methotrexate did not affect the ATP-dependent (45)Ca(2+) uptake by mitochondria, microsomes and inside-out plasma membrane vesicles and Ca(2+) efflux from plasma membrane vesicles. However, methotrexate was able to stimulate (45)Ca(2+) release from preloaded microsomes. The amount of Ca(2+) released by methotrexate was similar to that induced by IP(3). Methotrexate could be acting through the capacitative calcium entry mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2006.03.007DOI Listing

Publication Analysis

Top Keywords

effects methotrexate
12
plasma membrane
12
membrane vesicles
12
mitochondria microsomes
8
methotrexate
6
methotrexate calcium
4
calcium flux
4
flux rat
4
rat liver
4
liver mitochondria
4

Similar Publications

Introduction: Therapeutic drug monitoring (TDM) in inflammatory rheumatic diseases (RMDs) is gaining interest. However, there are unresolved questions about the best practices for implementing TDM effectively in clinical settings.

Objective: The primary objective of this study was to evaluate whether early TDM of adalimumab predicts drug survival at 52 weeks in patients with RMDs.

View Article and Find Full Text PDF

One of the most frequently impacted locations by psoriasis is the scalp. It is seen in about 80% of psoriasis cases worldwide, and its treatment is challenging. To compare the efficacy and safety of excimer light versus topical methotrexate (MTX) 1% hydrogel in treatment of scalp psoriasis.

View Article and Find Full Text PDF

This study aims to synthesize a new localized drug delivery system of bioglass, polyvinyl alcohol (PVA), cellulose (CNC), and sodium alginate (SA) beads as a carrier for methotrexate (MTX) drugs for the treatment of osteosarcoma. Methotrexate /Bioglass-loaded Polyvinyl/Cellulose/Sodium alginate biocomposite beads were prepared via the dropwise method with different concentrations of (65%SiO-30%CaO- 5%PO) bioglass. Samples were named B0, S0, S1, S2, and S3, respectively.

View Article and Find Full Text PDF

Background: 7-Hydroxymethotrexate (7-OHMTX) is the main metabolite in plasma following high-dose MTX (HD-MTX), which may result in activity and toxicity of the MTX. Moreover, 7-OHMTX could produce crystalline-like deposits within the renal tubules under acidic conditions or induce renal inflammation, oxidative stress, and cell apoptosis through various signaling pathways, ultimately leading to kidney damage. The objectives of this study were thus to explore the exposure-safety relationship of two compounds and search the most reliable marker for predicting HDMTX nephrotoxicity.

View Article and Find Full Text PDF

Methotrexate (MTX) is classified as an antimetabolite. It's commonly used to treat lung cancer. MTX is an immunosuppressant following the above-mentioned mechanism of action due to its poor selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!